Self Studies
Selfstudy
Selfstudy

Engineering Mat...

TIME LEFT -
  • Question 1
    1 / -0

    The equation \(\frac{{{{\rm{d}}^3}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^3}}} + {\left( {\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}}} \right)^2} + \frac{{4{\rm{dy}}}}{{{\rm{dx}}}} + 5{{\rm{y}}^4} = 0\) has the degree

  • Question 2
    1 / -0

    Let \(\frac{y}{{A\left( x \right)}} = \log x + C\) Where C is an arbitrary constant, is a solution of

    \(\left( {{x^3} - x} \right)\frac{{dy}}{{dx}} - \left( {3{x^2} - 1} \right)y = {x^5} - 2{x^3} + x\)

    Then, A is

  • Question 3
    1 / -0

    Equation (α xy3 + y cos x) dx + (x2y2 + β sin x) dy = 0 is exact if

  • Question 4
    1 / -0

    The general solution of the differential equation \(\frac{{{d^4}y}}{{d{x^4}}} - 2\frac{{{d^3}y}}{{d{x^3}}} + 2\frac{{{d^2}y}}{{d{x^2}}} - 2\frac{{dy}}{{dx}} + y = 0\) is

  • Question 5
    1 / -0

    General solution of (D2 + a2)y = sin a x is y = C1 cos ax + C2 sin ax + A(x)

    Where C1 and C2 are arbitrary constants and A(x) = _______

  • Question 6
    1 / -0

    The solution of differential equation

    dx – (x + y + 1) dy = 0 is

  • Question 7
    1 / -0

    Solve \(\frac{{{d^2}y}}{{d{y^2}}} - 3\frac{{dy}}{{dx}} + 2y = x{e^{3x}}\)

  • Question 8
    1 / -0

    If xr is on integrating factor of (x + y3) dx + 6xy2 dy = 0, then r is ______

  • Question 9
    1 / -0

    The differential equation \(y'' - 6y' + 9y = \frac{{{e^{3x}}}}{{{x^2}}}\) is solving by the method of variation of parameters, then Wronskian will be –

    Wronskian for solution y = c1y1(t) + c2y2(t) is defined as \(W(y_1,y_2)(x) = \left| {\begin{array}{*{20}{c}} {{y_1}}&{{y_2}}\\ {y_1'}&{y_2'} \end{array}} \right| \)

  • Question 10
    1 / -0

    The differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constants is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now