Concept:
The standard form of a first-order linear differential equation is,
Form 1: \(\frac{{dy}}{{dx}} + Py = Q\)
Where P and Q are the functions of x.
Integrating factor, \(IF = {e^{\smallint Pdx}}\)
Now, the solution for the above differential equation is,
\(y\left( {IF} \right) = \smallint IF.Qdx+C\)
Form 2: \(\frac{{dx}}{{dy}} + Px = Q\)
Where P and Q are the functions of y.
Integrating factor, \(IF = {e^{\smallint Pdy}}\)
Now, the solution for the above differential equation is,
\(x\left( {IF} \right) = \smallint IF.Qdy+C\)
Calculation:
\(\left( {{x^3} - x} \right)\frac{{dy}}{{dx}} - \left( {3{x^2} - 1} \right)y = {x^5} - 2{x^3} + x\)
\(\frac{{dy}}{{dx}} - \frac{{\left( {3{x^2} - 1} \right)}}{{\left( {{x^3} - x} \right)}}y = \frac{{\left( {{x^5} - 2{x^3} + x} \right)}}{{\left( {{x^3} - x} \right)}}\)
Integrating factor, \(IF = {e^{\smallint Pdx}}\)
\( = {e^{\int - \frac{{\left( {3{x^2} - 1} \right)}}{{\left( {{x^3} - x} \right)}}dx}}\)
\( = {e^{ - In\;\left( {{x^3} - x} \right)}}\)
\( = \frac{1}{{\left( {{x^3} - x} \right)}}\)
The solution is,
\(y\left( {\frac{1}{{{x^3} - x}}} \right) = \smallint \frac{{{x^5} - 2{x^3} + x}}{{{{\left( {{x^3} - x} \right)}^2}}}dx + C\)
\( = \smallint \frac{{{x^5} - 2{x^3} + x}}{{\left( {{x^6} - 2{x^4} + {x^2}} \right)}}dx + C\)
\( = \smallint \frac{{{x^5} - 2{x^3} + x}}{{x\left( {{x^5} - 2{x^3} + x} \right)}}dx + C\)
\( = \smallint \frac{1}{x}dx + C\)
\( \Rightarrow y\left( {\frac{1}{{{x^3} - x}}} \right) = \log x + C\)
The given solution is,
\(\frac{y}{{A\left( x \right)}} = \log x + C\)
By comparing both the equations,
A(x) = x3 - x