Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 6

Result Self Studies

Engineering Mathematics Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation \(\frac{{{{\rm{d}}^3}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^3}}} + {\left( {\frac{{{{\rm{d}}^2}{\rm{y}}}}{{{\rm{d}}{{\rm{x}}^2}}}} \right)^2} + \frac{{4{\rm{dy}}}}{{{\rm{dx}}}} + 5{{\rm{y}}^4} = 0\) has the degree
    Solution

    The order of differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative accruing in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    The degree of equation is the power of the highest differentiation. Hence the degree is 1.

  • Question 2
    1 / -0

    Let \(\frac{y}{{A\left( x \right)}} = \log x + C\) Where C is an arbitrary constant, is a solution of

    \(\left( {{x^3} - x} \right)\frac{{dy}}{{dx}} - \left( {3{x^2} - 1} \right)y = {x^5} - 2{x^3} + x\)

    Then, A is
    Solution

    Concept:

    The standard form of a first-order linear differential equation is,

    Form 1: \(\frac{{dy}}{{dx}} + Py = Q\)

    Where P and Q are the functions of x.

    Integrating factor, \(IF = {e^{\smallint Pdx}}\)

    Now, the solution for the above differential equation is,

    \(y\left( {IF} \right) = \smallint IF.Qdx+C\)

    Form 2: \(\frac{{dx}}{{dy}} + Px = Q\)

    Where P and Q are the functions of y.

    Integrating factor, \(IF = {e^{\smallint Pdy}}\)

    Now, the solution for the above differential equation is,

    \(x\left( {IF} \right) = \smallint IF.Qdy+C\)

    Calculation:

    \(\left( {{x^3} - x} \right)\frac{{dy}}{{dx}} - \left( {3{x^2} - 1} \right)y = {x^5} - 2{x^3} + x\)

    \(\frac{{dy}}{{dx}} - \frac{{\left( {3{x^2} - 1} \right)}}{{\left( {{x^3} - x} \right)}}y = \frac{{\left( {{x^5} - 2{x^3} + x} \right)}}{{\left( {{x^3} - x} \right)}}\)

    Integrating factor, \(IF = {e^{\smallint Pdx}}\) 

    \( = {e^{\int - \frac{{\left( {3{x^2} - 1} \right)}}{{\left( {{x^3} - x} \right)}}dx}}\)

    \( = {e^{ - In\;\left( {{x^3} - x} \right)}}\)

    \( = \frac{1}{{\left( {{x^3} - x} \right)}}\)

    The solution is,

    \(y\left( {\frac{1}{{{x^3} - x}}} \right) = \smallint \frac{{{x^5} - 2{x^3} + x}}{{{{\left( {{x^3} - x} \right)}^2}}}dx + C\)

    \( = \smallint \frac{{{x^5} - 2{x^3} + x}}{{\left( {{x^6} - 2{x^4} + {x^2}} \right)}}dx + C\)

    \( = \smallint \frac{{{x^5} - 2{x^3} + x}}{{x\left( {{x^5} - 2{x^3} + x} \right)}}dx + C\)

    \( = \smallint \frac{1}{x}dx + C\)

    \( \Rightarrow y\left( {\frac{1}{{{x^3} - x}}} \right) = \log x + C\)

    The given solution is,

    \(\frac{y}{{A\left( x \right)}} = \log x + C\)

    By comparing both the equations,

    A(x) = x3 - x

  • Question 3
    1 / -0
    Equation (α xy3 + y cos x) dx + (x2y2 + β sin x) dy = 0 is exact if
    Solution

    Concept:

    M dx + N dy = 0, will be exact differential equation if:

    \(\frac{{\partial {\rm{M}}}}{{\partial {\rm{y}}}} = \frac{{\partial {\rm{N}}}}{{\partial {\rm{x}}}}\)

    Where M and N are functions of x and y.

    Calculation:

    M = α xy3 + y cos x

    N = x2y2 + β sin x

    \(\frac{{\partial M}}{{\partial y}} = 3\;\alpha \;x{y^2} + \cos x\)

    \(\frac{{\partial N}}{{\partial x}} = 2x{y^2} + \beta \cos x\)

    The differential equation to be exact,

    3 α xy2 + cos x = 2xy2 + β cos x

    \( \Rightarrow 3\alpha = 2 \Rightarrow \alpha = \frac{2}{3}\)

    And β = 1
  • Question 4
    1 / -0
    The general solution of the differential equation \(\frac{{{d^4}y}}{{d{x^4}}} - 2\frac{{{d^3}y}}{{d{x^3}}} + 2\frac{{{d^2}y}}{{d{x^2}}} - 2\frac{{dy}}{{dx}} + y = 0\) is
    Solution

    Concept:

    General equation for DE,

    \(\frac{{{d^n}y}}{{d{x^n}}} + {k_1}\frac{{{d^{n - 1}}y}}{{d{x^{n - 1}}}} + {k_2}\frac{{{d^{n - 2}}y}}{{d{x^{n - 2}}}} + \ldots {k_n}y = 0\)

    Then its corresponding Auxiliary equation will be

    AE: Dn + k1 Dn-1 + … kn = 0

    Then the solution of above DE will be as follows:

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

     

    Calculation:

    Given DE,

    \(\frac{{{d^4}y}}{{d{x^4}}} - \frac{{2{d^3}y}}{{d{x^3}}} + \frac{{2{d^2}y}}{{d{x^2}}} - \frac{{2dy}}{{dx}} + y = 0\)

    Its AE: (D4 – 2D3 + 2D2 – 2D + D) = 0

    It roots = 1, 1, i, -i

    Then it has two equal roots and one pair of imaginary roots.

    Therefore, the solution is: (c1 + c2x) ex + c3 cos x + c4 sin x = 0
  • Question 5
    1 / -0

    General solution of (D2 + a2)y = sin a x is y = C1 cos ax + C2 sin ax + A(x)

    Where C1 and C2 are arbitrary constants and A(x) = _______
    Solution

    Concept:

    For different roots of the auxiliary equation, the solution (complementary function) of the differential equation is as shown below.

    Roots of Auxiliary Equation

    Complementary Function

    m1, m2, m3, … (real and different roots)

    \({C_1}{e^{{m_1}x}} + {C_2}{e^{{m_2}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m3, … (two real and equal roots)

    \(\left( {{C_1} + {C_2}x} \right){e^{{m_1}x}} + {C_3}{e^{{m_3}x}} + \ldots\)

    m1, m1, m1, m4… (three real and equal roots)

    \(\left( {{C_1} + {C_2}x + {C_3}{x^2}} \right){e^{{m_1}x}} + {C_4}{e^{{m_4}x}} + \ldots\)

    α + i β, α – i β, m3, … (a pair of imaginary roots)

    \({e^{\alpha x}}\left( {{C_1}\cos \beta x + {C_2}\sin \beta x} \right) + {C_3}{e^{{m_3}x}} + \ldots\)

    α ± i β, α ± i β, m5, … (two pairs of equal imaginary roots)

    \({e^{\alpha x}}\left( {\left( {{C_1} + {C_2}x} \right)\cos \beta x + \left( {{C_3} + {C_4}x} \right)\sin \beta x} \right) + {C_5}{e^{{m_5}x}} + \ldots\)

    Calculation:

    (D2 + a2)y = sin ax

    Auxiliary equation: (D2 + a2) = 0

    D = ± ja

    Complementary function is,

    y = C1 cos ax + C2 sin ax

    Particular integral is,

    \(PI = \frac{1}{{\left( {{D^2} + {a^2}} \right)}}\sin ax\) 

    Put D2 = -a2, f(D) = 0

    \( = \frac{x}{{2D}}\sin ax\) 

    \( = \frac{D}{{2{D^2}}}\sin ax\) 

    Put D2 = -a2

    \( = \frac{{ - x}}{{2{a^2}}}D\left( {\sin ax} \right) = \frac{{ - x}}{{2{a^2}}}\left( {\cos ax} \right)\left( a \right)\) 

    \( = \frac{{ - x}}{{2a}}\cos ax\) 

    Now, the total solution is,

    \(y = {C_1}\cos ax + {C_2}\sin ax + \frac{{ - x}}{{2a}}\cos ax\) 

    The given solution is,

    y = C1 cos ax + C2 sin ax + A(x)

    By comparing the above two equations.

    \(A\left( x \right) = \frac{{ - x}}{{2a}}\cos ax\)
  • Question 6
    1 / -0

    The solution of differential equation

    dx – (x + y + 1) dy = 0 is
    Solution

    Given differential equation is,

    dx – (x + y + 1) dy = 0

    \(\frac{{dy}}{{dx}} = \frac{1}{{\left( {x + y + 1} \right)}}\) 

    Put (x + y + 1) = t

    \( \Rightarrow 1 + \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}}\) 

    \( \Rightarrow \frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} - 1\) 

    Now, the differential equation becomes

    \(\frac{{dt}}{{dx}} - 1 = \frac{1}{t}\) 

    \(\frac{{dt}}{{dx}} = \frac{1}{t} + 1\) 

    \(\frac{{dt}}{{dx}} = \frac{{t + 1}}{t}\) 

    \( \Rightarrow dt\left( {\frac{t}{{t + 1}}} \right) = dx\) 

    \( \Rightarrow \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    \( \Rightarrow \smallint \left( {1 - \frac{1}{{t + 1}}} \right)dt = dx\) 

    t = In (t + 1) = x + C1

    (x + y + 1) – In (x + y + 2) = x + C1

    y + 1 – C1 = In (x + y + 2)

    In (x + y + 2) = y + k

    (x + y + 2) = ey - ek

    ⇒ (x + y + 2) e-y = C
  • Question 7
    1 / -0
    Solve \(\frac{{{d^2}y}}{{d{y^2}}} - 3\frac{{dy}}{{dx}} + 2y = x{e^{3x}}\)
    Solution

    (D2 – 3D + 2)y = x e3x

     A.E. is (D2 + 3D + 2) = 0

    ⇒ (D - 1) (D - 2) = 0

    ⇒ D = 1, 2

    C.F. = C1ex + C2e2x

    \(\begin{array}{l} P.I. = \frac{1}{{\left( {{D^2} - 3D + 2} \right)}}\left( {x\;{e^{3x}}} \right)\\ = {e^{3x}}\frac{1}{{{{\left( {D + 3} \right)}^2} - 3\left( {D + 3} \right) + 2}}x\;\\ = {e^{3x}}\frac{1}{{{D^2} + 3D + 2}}\left( x \right) \end{array}\)

    \(\begin{array}{l} = \frac{{{e^{3x}}}}{2}{\left[ {1 + \left( {\frac{{3D + {D^2}}}{2}} \right)} \right]^{ - 1}}x\\ = \frac{{{e^{3x}}}}{2}\left( {1 - \frac{{3D}}{2} \ldots } \right)x\\ = \frac{{{e^{3x}}}}{2}\left( {x - \frac{3}{2}} \right) \end{array}\)

    Complete solution is, \(y = {C_1}{e^x} + {C_2}{e^{2x}} + \frac{{{e^{3x}}}}{2}\left( {x - \frac{3}{2}} \right)\)
  • Question 8
    1 / -0
    If xr is on integrating factor of (x + y3) dx + 6xy2 dy = 0, then r is ______
    Solution

    Concept:

    In the equation M dx + N dy = 0

    If \(\frac{{\left( {\frac{{\partial M}}{{\partial y}} - \frac{{\partial N}}{{\partial x}}} \right)}}{N}\) be a function of x only = f(x), then \({e^{\smallint f\left( x \right)dx}}\) is an integrating factor.

    Calculation:

    Given differential equation is

    (x + y3)dx + 6xy2 dy = 0

    M = x + y3, N = 6xy2

    \(\frac{{\partial M}}{{\partial y}} = 3{y^2}\) 

    \(\frac{{\partial N}}{{\partial x}} = 6{y^2}\) 

    \(\frac{{\frac{{\partial M}}{{\partial y}} - \frac{{\partial N}}{{\partial x}}}}{N} = \frac{{3{y^2} - 6{y^2}}}{{6x{y^2}}} = \frac{{ - 1}}{2}\left( {\frac{1}{x}} \right) = f\left( x \right)\) 

    Integrating factor \({e^{\smallint \frac{{ - 1}}{2}\left( {\frac{1}{x}} \right)dx}} = \frac{1}{{\sqrt x }} = {x^{ - 0.5}}\) 

    Given that xr is an integrating factor.

    ⇒ r = -0.5
  • Question 9
    1 / -0

    The differential equation \(y'' - 6y' + 9y = \frac{{{e^{3x}}}}{{{x^2}}}\) is solving by the method of variation of parameters, then Wronskian will be –

    Wronskian for solution y = c1y1(t) + c2y2(t) is defined as \(W(y_1,y_2)(x) = \left| {\begin{array}{*{20}{c}} {{y_1}}&{{y_2}}\\ {y_1'}&{y_2'} \end{array}} \right| \)

    Solution

    Give equation is (D2 – 6D + 9)y = e3x/x2

    Auxiliary equation is, (D2 – 6D + 9) = 0

    ⇒ (D – 3)2 = 0

    C.F. = (C1 + C2x) e3x

    Wronskian, \(W = \left| {\begin{array}{*{20}{c}} {{y_1}}&{{y_2}}\\ {y_1^1}&{y_2^1} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {{e^{3x}}}&{x{e^{3x}}}\\ {3{e^{3x}}}&{{e^{3x}} + 3x{e^{3x}}} \end{array}} \right| = {e^{6x}}\)
  • Question 10
    1 / -0
    The differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constants is:
    Solution

    \(y = a\sin \left( {x + b} \right)\)     ----(1)

    There are two constants (a, b) so order of differential equations will be of order two.

    \(\frac{{dy}}{{dx}} = a\cos \left( {x + b} \right)\)       ----(2)

    \(\frac{{{d^2}y}}{{d{x^2}}} = - a\sin \left( {x + b} \right) = - y\)       ----(3)

    \(\frac{{{d^2}y}}{{d{x^2}}} + y = 0\) which is free from the arbitrary constants a and b and hence this the required differential equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now