Concept:
The generalized AM expression is represented as:
s(t) = Ac [1 + μa mn (t)] cos ωc t
The total transmitted power for an AM system is given by:
\({P_t} = {P_c}\left( {1 + \frac{{{μ^2}}}{2}} \right)\)
Pc = Carrier Power
μ = Modulation Index
The above expression can be expanded to get:
\({P_t} = {P_c} + P_c\frac{{{μ^2}}}{2}\)
The total power is the sum of the carrier power and the sideband power, i.e.
\({P_s} = P_c\frac{{{μ^2}}}{2}\)
The power in single sideband will be:
\({P_s} = \frac{1}{2}\times P_c\frac{{{μ^2}}}{2}\)
With \(P_c=\frac{A^2}{2}\), the above can be written as:
\({P_s} = \frac{1}{2}\times \frac{A_c^2}{2}\frac{{{μ^2}}}{2}\)
\({P_s} = \frac{{{A_c^2μ^2}}}{8}\) ---(1)
Analysis:
Given the modulation index for the AM signal:
μa = 0.6
Using Equation (1), the single-sideband power will be:
\(P_{SSB}= \frac{{\mu _a^2\;A_c^2}}{8}\)
Thus, the desired ratio is:
\(\frac{{{P_{SSB}}}}{{{P_T}}} = \frac{{\mu _a^2A_c^2}}{8} \times \frac{1}{{\frac{{A_c^2}}{2}\left[ {1 + \frac{{\mu _a^2}}{2}} \right]}}\)
\( = \frac{{{{\left( {0.6} \right)}^2}}}{8} \times \frac{1}{{\frac{1}{2}\left[ {1 + \frac{{{{\left( {0.6} \right)}^2}}}{2}} \right]}}\)
\(= \frac{9}{{118}} = 0.0763\)