Concept:
To check possibility of fluid flow, continuity equilibrium should be verified, i.e.
\(\frac{{\partial u}}{{\partial x}} + \frac{{\partial v}}{{\partial y}} = 0\)
Angular velocity about z-axis,
\({\omega _z} = \frac{1}{2}\left( {\frac{{\partial v}}{{\partial x}} - \frac{{\partial u}}{{\partial y}}} \right)\)
Calculation:
\(u = 2x + \frac{{{y^3}}}{3} - {x^2}y\)
\(v = x{y^2} - 2y - \frac{{{x^3}}}{3}\)
\(\frac{{\partial u}}{{\partial x}} = 2 - 2xy\;\;\;;\;\frac{{\partial u}}{{\partial y}} = {y^2} - {x^2}\)
\(\frac{{\partial v}}{{\partial x}} = {y^2} - \frac{{3{x^2}}}{3} = {y^2} - {x^2}\)
\(\frac{{\partial v}}{{\partial y}} = 2xy - 2\)
For 2-D flow, continuity equation,
\(\frac{{\partial u}}{{\partial x}} + \frac{{\partial v}}{{\partial y}} = 0\)
(2 – 2xy) + (2xy - 2) = 0
Hence, it represents possible case of fluid flow.
Now,
\({\rm{Angular\;velocity\;}}\left( {{\omega _z}} \right) = \frac{1}{2}\left( {\frac{{\partial v}}{{\partial x}} - \frac{{\partial u}}{{\partial y}}} \right)\)
\({\omega _z} = \frac{1}{2}\left[ {\left( {{y^2} - {x^2}} \right) - \left( {{y^2} - {x^2}} \right)} \right] = 0\)
∴ ωz = 0