Explanation:
f(x, y) = x3y2 (1 - x - y)
\(\frac{{\partial f}}{{\partial x}} = 3{x^2}{y^2} - 4{x^3}{y^2} - 3{x^2}{y^3}\)
\(\frac{{\partial f}}{{\partial y}} = 2{x^3}y - 2{x^4}y - 3{x^3}{y^2}\)
\(\frac{{{\partial ^2}f}}{{\partial {x^2}}} = r = 6x{y^2} - 12{x^2}{y^2} - 6x{y^3}\)
\(\frac{{{\partial ^2}f}}{{\partial x \cdot \partial y}} = s = 6{x^2}y - 8{x^3}y - 9{x^2}{y^2}\)
\(\frac{{{\partial ^2}f}}{{\partial {y^2}}} = t = 2{x^3} - 2{x^4} - 6{x^3}y\)
Now,
Put \(\frac{{\partial f}}{{\partial x}} = 0,\) we get x2y2 (3 - 4x - 3y) = 0
\(\frac{{\partial f}}{{\partial y}} = 0,\)
We get x3y (2 - 2x - 3y) = 0
Solving these two, we get stationary points \( \to \left( {\frac{1}{2},\frac{1}{3}} \right)\;\& \;\left( {0,\;0} \right)\)
Now,
rt - s2 = x4y2 [12 (1 - 2x - y)(1 - x - 3y) - (6 - 8x - 9y)2]
Since x, y ϵ (0, ∞)
Thus, for \(\left( {\frac{1}{2},\frac{1}{3}} \right)\)
\(rt - {s^2} = \frac{1}{{16}}\frac{1}{9}\left[ {12\left( { - \frac{1}{3}} \right)\left( { - \frac{1}{2}} \right) - {{\left( {6 - 4 - 3} \right)}^2}} \right]\)
\(rt - {s^2} = \frac{1}{{14}} > 0\)
\(\& \;r = 6\left( {\frac{1}{2} \cdot \frac{1}{9} - \frac{2}{4} \cdot \frac{1}{9} - \frac{1}{2} \cdot \frac{1}{{27}}} \right) = - \frac{1}{9} < 0\)
Hence, f(x, y) has a maxima at \(\left( {\frac{1}{2},\frac{1}{3}} \right)\)
\(\therefore {\rm{Maximum\;value}} = \frac{1}{8} \cdot \frac{1}{9}\left( {1 - \frac{1}{2} - \frac{1}{3}} \right) = \frac{1}{{432}}\)