Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 3

Result Self Studies

Engineering Mathematics Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The non-zero of n for which the differential equation (3xy2 + n2 x2y) dx + (nx3 + 3x2y) dy = 0, x ≠ 0 become exact differential equation is:

    Solution

    Concept:

    M dx + N dy = 0, will be exact differential equation if:

    \(\frac{{\partial {\rm{M}}}}{{\partial {\rm{y}}}} = \frac{{\partial {\rm{N}}}}{{\partial {\rm{x}}}}\)

    Where M and N are functions of x and y.

    Given:

    Equation (3xy2 + n2 x2y) dx + (nx3 + 3x2y) dy = 0, x ≠ 0

    Here M = 3xy2 + n2 x2y

    N = nx3 + 3x2y

    Given equation is exact, thus:

    6xy + n2 x2 = 3nx2 + 6xy

    n2 x2 = 3nx2

    n = 3

  • Question 2
    1 / -0
    If u = log (x2 + y2) where x + y + xy = 4, then \(\frac{{du}}{{dx}}\) at (1, 1) is
    Solution

    Given:

    u = log (x2 + y2) where x + y + xy = 4

    \(du = \frac{{\partial u}}{{\partial x}}dx + \frac{{\partial u}}{{\partial y}}dy\)

    \(\therefore \frac{{du}}{{dx}} = \frac{{\partial u}}{{\partial x}}\frac{{dx}}{{dx}} + \frac{{\partial u}}{{\partial y}}\frac{{dy}}{{dx}}\)

    Also,

    \(\frac{{dy}}{{dx}} = \frac{{ - \partial f/\partial x}}{{\partial f/\partial y}}\)

    Let,

    f(x, y) = x + y + xy = 4

    then

    \(\frac{{\partial f}}{{\partial x}} = 1 + y\;and\frac{{\partial f}}{{\partial y}} = 1 + x\)

    \(\therefore \frac{{du}}{{dx}} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}} + \frac{{2y}}{{\left( {{x^2} + {y^2}} \right)}}\left[ {\frac{{ - 1\left( {1 + y} \right)}}{{\left( {1 + x} \right)}}} \right]\)

    \(\therefore {\left( {\frac{{du}}{{dx}}} \right)_{\left( {1,1} \right)}} = \frac{2}{{\left( {1 + 1} \right)}} + \frac{2}{{\left( {1 + 1} \right)}}\left\{ { - \frac{2}{2}} \right\} = 0\)

  • Question 3
    1 / -0
    For the function f(x) = sin x - cos x, use Rolle’s Theorem and find the point where derivative vanishes in [0, π].
    Solution

    f(x) = sin x - cos x

    f’(x) = cos x + sin x

    f’(c) = 0 ⇒ cos c + sin c = 0

    tan c = -1

    \(C = - \frac{\pi }{4},\frac{{3\pi }}{4},\frac{{7\pi }}{4}\)

    Since, C ϵ [0, π]

    \(\therefore C = \frac{{3\pi }}{4}\)

  • Question 4
    1 / -0
    The value of ‘C’ of the Cauchy’s mean value theorem for f(x) = ex and g(x) = e-x in [2, 3] is _____.
    Solution

    Explanation:

    Given:

    f(x) = ex, g(x) = e-x

    Now,

    derivative of f(x) i.e. f(x) = ex

    derivative of g(x) i.e. g(x) = - ex

    range is given as [2, 3], that is, a = 2 and b = 3

    here, f(x) and g(x) are differentiable and continuous and derivative of g(x) is not equal to 0.

    They are satisfying the conditions of Cauchy’s mean value theorem.

    Now,

    Consider it is in interval of [a, b].

    \(\frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}}\)

    \(\frac{{{e^c}}}{{ - {e^{ - c}}}} = \frac{{{e^b} - {e^a}}}{{{e^{ - b}} - \;{e^{ - a}}}}\)

    \(- {e^{2c}} = \frac{{{e^3} - {e^2}}}{{{e^{ - 3}} - \;{e^{ - 2}}}} - \; = \; - {e^{3 + 2}}\)

    c = ½ (2 + 3) = 5/2 = 2.5
  • Question 5
    1 / -0
    If \(u = x\log xy\), where \({x^3} + {y^3} + 3xy = 1\;\)then \(\frac{{du}}{{dx}}\) is equal to
    Solution

    Explanation:

    Given:

     \(u = x\log xy\)

    \({x^3} + {y^3} + 3xy = 1\)

    we know that

    \(\frac{{\partial u}}{{\partial x}} = \frac{{\partial u}}{{\partial x}} + \frac{{\partial u}}{{\partial y}}\frac{{\partial y}}{{\partial x}}\)

    \(\frac{{\partial u}}{{\partial x}} = x.\frac{1}{{xy}}.y + \log xy = 1 + \log xy\)

    \(\frac{{\partial u}}{{\partial y}} = x.\frac{1}{{xy}}.x = \frac{x}{y}\)

    \( \Rightarrow 3{x^2} + 3{y^2}\frac{{\partial y}}{{\partial x}} + 3\left( {x\frac{{\partial y}}{{\partial x}} + y.1} \right) = 0\)

    \( \Rightarrow \frac{{\partial y}}{{\partial x}} = - \left( {\frac{{{x^2} + y}}{{{y^2} + x}}} \right)\)

    \( \Rightarrow \frac{{\partial u}}{{\partial x}} = \left( {1 + \log xy} \right) + \frac{x}{y}\left\{ { - \left( {\frac{{{x^2} + y}}{{{y^2} + x}}} \right)} \right\}\)

    \( \frac{{\partial u}}{{\partial x}} =\left( {1 + \log xy} \right) - \frac{x}{y}\left( {\frac{{{x^2} + y}}{{{y^2} + x}}} \right)\)

  • Question 6
    1 / -0

    Find C of Cauchy’s mean value theorem for the function 1/x and 1/x2 in [4, 6]

    Solution

    Explanation:

    \(f\left( x \right) = \frac{1}{x},\;g\left( x \right) = \frac{1}{{{x^2}}}\)

    f(x) and g(x) are continuous in [4, 6]

    f(x) and g(x) are differentiable in [4, 6]

    \(g'\left( x \right) = \frac{{ - 2}}{{{x^3}}}\)

    g’(x) ≠ 0 in (4, 6)

    Now, according to Cauchy’s mean value theorem

    \(\frac{{f'\left( c \right)}}{{g'\left( c \right)}} = \frac{{f\left( b \right) - f\left( a \right)}}{{g\left( b \right) - g\left( a \right)}}\)

    \(\begin{array}{*{20}{c}} {f'\left( x \right) = \frac{{ - 1}}{{{x^2}}}}&{f'\left( b \right) = \frac{{ - 2}}{{{x^3}}}} \end{array}\)

    \(f\left( a \right) = f\left( 4 \right) = \frac{1}{4}\;\)

    \(f\left( b \right) = f\left( 6 \right) = \frac{1}{6}\)

    \(\begin{array}{l} g\left( a \right) = g\left( 4 \right) = \frac{1}{{16}}\\ g\left( b \right) = g\left( 6 \right) = \frac{1}{{36}} \end{array}\)

    \(\begin{array}{l} \begin{array}{*{20}{c}} {f'\left( x \right) = \frac{{ - 1}}{{{c^2}}}}&{g'\left( c \right) = \frac{{ - 2}}{{{c^3}}}} \end{array}\\ \Rightarrow \frac{{\frac{{ - 1}}{{{c^2}}}}}{{\frac{{ - 2}}{{{c^3}}}}} = \frac{{\frac{1}{6} - \frac{1}{4}}}{{\frac{1}{{36}} - \frac{1}{{16}}}} = 2.4 \end{array}\)

    ∴ c = 4.8

  • Question 7
    1 / -0

    If the differential equation corresponding to the family of curves Y = (A + Bx) e3x is given by

    \(\frac{{{d^2}y}}{{d{x^2}}} = a\frac{{dy}}{{dx}} + by,\) then (a - b) is _____

    Solution

    Explanation:

    Given:

    Y = (A + Bx) e3x is solution of

    \(\frac{{{d^2}y}}{{d{x^2}}} = a\frac{{dy}}{{dx}} + by\)

    Now,

    Y = (A + Bx) e3x

    Ye-3x = A + Bx

    Differentiating,

    Y(-3)e-3x + e-3x y’ = B

    Differentiating again,

    Y(9)e-3x + e-3x(-3x)y’ + e-3xy’’ + y’(-3)e-3x = 0

    y’’ – 6y’ + 9y = 0

    y’’ = 6y’ – 9y

    Now,

    Comparing with given solution,

    y’’ = ay’ + by

    We get,

    a = 6; b = -9

    a – b = 6 – (-9) = 15

  • Question 8
    1 / -0
    The maximum value of function f(x, y) = x3 y2 (1 - x - y) for x, y ϵ (0, ∞) is
    Solution

    Explanation:

    f(x, y) = x3y2 (1 - x - y)

    \(\frac{{\partial f}}{{\partial x}} = 3{x^2}{y^2} - 4{x^3}{y^2} - 3{x^2}{y^3}\)

    \(\frac{{\partial f}}{{\partial y}} = 2{x^3}y - 2{x^4}y - 3{x^3}{y^2}\)

    \(\frac{{{\partial ^2}f}}{{\partial {x^2}}} = r = 6x{y^2} - 12{x^2}{y^2} - 6x{y^3}\)

    \(\frac{{{\partial ^2}f}}{{\partial x \cdot \partial y}} = s = 6{x^2}y - 8{x^3}y - 9{x^2}{y^2}\)

    \(\frac{{{\partial ^2}f}}{{\partial {y^2}}} = t = 2{x^3} - 2{x^4} - 6{x^3}y\)

    Now,

    Put \(\frac{{\partial f}}{{\partial x}} = 0,\) we get x2y2 (3 - 4x - 3y) = 0

    \(\frac{{\partial f}}{{\partial y}} = 0,\)

    We get x3y (2 - 2x - 3y) = 0

    Solving these two, we get stationary points \( \to \left( {\frac{1}{2},\frac{1}{3}} \right)\;\& \;\left( {0,\;0} \right)\) 

    Now,

    rt - s2 = x4y2 [12 (1 - 2x - y)(1 - x - 3y) - (6 - 8x - 9y)2]

    Since x, y ϵ (0, ∞)

    Thus, for \(\left( {\frac{1}{2},\frac{1}{3}} \right)\) 

    \(rt - {s^2} = \frac{1}{{16}}\frac{1}{9}\left[ {12\left( { - \frac{1}{3}} \right)\left( { - \frac{1}{2}} \right) - {{\left( {6 - 4 - 3} \right)}^2}} \right]\) 

    \(rt - {s^2} = \frac{1}{{14}} > 0\)

    \(\& \;r = 6\left( {\frac{1}{2} \cdot \frac{1}{9} - \frac{2}{4} \cdot \frac{1}{9} - \frac{1}{2} \cdot \frac{1}{{27}}} \right) = - \frac{1}{9} < 0\)

    Hence, f(x, y) has a maxima at \(\left( {\frac{1}{2},\frac{1}{3}} \right)\) 

    \(\therefore {\rm{Maximum\;value}} = \frac{1}{8} \cdot \frac{1}{9}\left( {1 - \frac{1}{2} - \frac{1}{3}} \right) = \frac{1}{{432}}\)

  • Question 9
    1 / -0
    Find the maximum and minimum values of f(x) = sin x + cos 2x where \(0\le x \le 2\pi\)
    Solution

    Explanation:

    f(x) = sin x + cos 2x in [0, 2π]

    f’(x) = cos x – 2 sin 2x

    Since sin2x = 2 sinx cosx, the above can be written as:

    f'(x) = cos x [1 – 4 sinx]

    Now,

    Equating this to zero, we solve for x as:

    f'(x) = cos x [1 – 4 sinx] = 0

    ⇒ cos x = 0; 1 – 4sinx = 0

    For cosx = 0,

    ⇒ x = π/2, 3π/2 in [0, 2π]

    Now,

    Also, for sin x = 1/4, f'(x) = 0.

    Also f’(x) exists for all x in [0, 2π]

    Checking for all the points in the defined range, we get:

    Now,

    f(0) = 1; f(2π) = 1; f(π/2) = 0; f(3π/2) = -2

    At sinx = 1/4 , f(x) = 1/2 + (1 – 2(1/4)2) = 9/8

    ∴ The maximum and minimum values of f(x) are 9/8 and -2 respectively, and they occur at:

     \(sinx = \frac{1}{4}\;and\;x = \frac{{3\pi }}{2}\)

  • Question 10
    1 / -0
    If \({y_1} = \frac{{{x_2} \cdot {x_3}}}{{{x_1}}},\;{y_2} = \frac{{{x_3}{x_1}}}{{{x_2}}},\;{y_3} = \frac{{{x_1}{x_2}}}{{{x_3}}},\) then the Jacobian of y1, y2, y3 w.r.t. x1, x2, x3 is ______
    Solution

    Explanation:

    Jacobian of (y1, y2, y3) w.r.t. (x1, x2, x­3) is equal to

    \(\frac{{\partial \left( {{y_1},{y_2},\;{y_3}} \right)}}{{\partial \left( {{x_1},\;{x_2},\;{x_3}} \right)}} = \left| {\begin{array}{*{20}{c}}{\frac{{\partial {y_1}}}{{\partial {x_1}}}}&{\frac{{\partial {y_1}}}{{\partial {x_2}}}}&{\frac{{\partial {y_1}}}{{\partial {x_3}}}}\\{\frac{{\partial {y_2}}}{{\partial {x_1}}}}&{\frac{{\partial {y_2}}}{{\partial {x_2}}}}&{\frac{{\partial {y_2}}}{{\partial {x_3}}}}\\{\frac{{\partial {y_3}}}{{\partial {x_1}}}}&{\frac{{\partial {y_3}}}{{\partial {x_2}}}}&{\frac{{\partial {y_3}}}{{\partial {x_3}}}}\end{array}} \right|\)

    \(= \left| {\begin{array}{*{20}{c}}{\frac{{ - {x_2} \cdot {x_3}}}{{x_1^2}}}&{\frac{{{x_3}}}{{{x_1}}}}&{\frac{{{x_2}}}{{{x_1}}}}\\{\frac{{{x_3}}}{{{x_2}}}}&{\frac{{ - {x_3} \cdot {x_1}}}{{x_2^2}}}&{\frac{{{x_1}}}{{{x_1}}}}\\{\frac{{{x_2}}}{{{x_3}}}}&{\frac{{{x_1}}}{{{x_3}}}}&{\frac{{ - {x_1} \cdot {x_2}}}{{x_3^2}}}\end{array}} \right|\)

    \(= \frac{1}{{x_1^2 \cdot x_2^2 \cdot x_3^2}}\left| {\begin{array}{*{20}{c}}{ - {x_2}{x_3}}&{{x_1}{x_3}}&{{x_1}{x_2}}\\{{x_2}{x_3}}&{ - {x_1}{x_3}}&{{x_1}{x_2}}\\{{x_2}{x_3}}&{{x_1}{x_3}}&{ - {x_1}{x_2}}\end{array}} \right|\)

    \(= \frac{{x_1^2x_2^2x_3^2}}{{x_1^2x_2^2x_3^2}}\left| {\begin{array}{*{20}{c}}{ - 1}&1&1\\1&{ - 1}&1\\1&1&{ - 1}\end{array}} \right|\)

    = -1(1 - 1) - 1(-1 - 1) + 1(1 + 1)

    = 0 + 2 + 2

    = 4

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now