Concept:
Eq. of plane through (a, 0, 0), (0, b, 0) and (0, 0, c) is
\(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\)
To evaluate the \(\mathop \smallint \nolimits_c \vec F \cdot d\vec r\) we use Stoke’s theorem
\(\mathop \smallint \nolimits_C \vec F \cdot d\vec r = \int\!\!\!\int \left( {curl\;\vec F} \right) \cdot \hat n\;ds\)
Where,
\(d\vec r = dx\;\hat i + dy\;\hat j + dz\;\hat k\)
n̂ = unit normal to the plane.
\({\rm{Curl\;}}\vec F = \vec \nabla \times \vec F\)
Calculation:
Eq. of plane:
\(\frac{x}{2} + \frac{y}{3} + \frac{z}{6} = 1 \Rightarrow 3x + 2y + z = 6\)
\(\vec n = 3\hat i + 2\hat j + \hat k\)
\(\hat n = \frac{{\vec n}}{{\left| {\vec n} \right|}}\)
\(\therefore \hat n = \frac{1}{{\sqrt {14} }}\left( {3\hat i + 2\hat j + \hat k} \right)\)
\({\rm{Curl\;}}\vec F = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {\frac{\partial }{{\partial x}}}&{\frac{\partial }{{\partial y}}}&{\frac{\partial }{{\partial z}}}\\ {x + y}&{2x - z}&{y + z} \end{array}} \right|\)
= î (1 + 1) – ĵ (0) + k̂ (2 – 1)
= 2î + k̂
\(\therefore curl\;\vec F \cdot \hat n = \left( {2\hat i + \hat k} \right) \cdot \frac{1}{{\sqrt {14} }}\left( {3\hat i + 3\hat j + \hat k} \right)\)
\(\therefore curl\;\vec F \cdot \hat n = \frac{7}{{\sqrt {14} }}\)
Hence,
\(\mathop \smallint \nolimits_C \vec F \cdot d\vec r = \int\!\!\!\int \frac{7}{{\sqrt {14} }}ds = \frac{7}{{\sqrt {14} }}\int\!\!\!\int dx\;dy\)
\({\rm{Given\;area\;}} = 3\sqrt {14} = \int\!\!\!\int ds\)
\(\therefore \frac{7}{{\sqrt {14} }} \times 3\sqrt {14} = 21\)