Concept:
\( {\sigma _{1,2}} = \frac{1}{2}\left[ {\left( {{\sigma _x} + {\sigma _y}} \right) \pm \sqrt {{{\left( {{\sigma _x} - {\sigma _y}} \right)}^2} + 4\tau _{xy}^2} } \right]\\ {\tau _{max}} = \frac{{{\sigma _1} - {\sigma _2}}}{2} \)
Calculation:
Given: σx = 120 N/mm2, σy = -90 N/mm2, σ1 = 150 N/mm2
\( {\sigma _{1,2}} = \frac{1}{2}\left[ {\left( {{\sigma _x} + {\sigma _y}} \right) \pm \sqrt {{{\left( {{\sigma _x} - {\sigma _y}} \right)}^2} + 4\tau _{xy}^2} } \right] \)
\({\sigma _1} = \frac{1}{2}\left[ {\left( {120 - 90} \right) + \sqrt {{{\left( {120 + 90} \right)}^2} + 4{{\left( \tau \right)}^2}} } \right] = 150\)
\( \Rightarrow 30 + \sqrt {{{\left( {210} \right)}^2} + 4{{\left( \tau \right)}^2}} = 300\)
⇒ (210)2 + 4(τ)2 = (270)2
τ = 84.85 N/mm2
Shear stress on these plane = 84 MPa
Confusion Point:
Sum of normal stress = sum of principal stress
σx + σy = σ1 + σ2
120 – 90 = 150 + σ2
σ2 = -120 N/mm2
\({\tau _{max}} = \frac{{{\sigma _1} - {\sigma _2}}}{2} = \frac{{150 - \left( { - 120} \right)}}{2} = 135N/m{m^2}\)
This is maximum shear stress, not shear stress on the oblique plane.