Self Studies

Strength of Materials Test 5

Result Self Studies

Strength of Materials Test 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If section modulus of a beam is increased, the bending stress in the beam will:
    Solution

    Concept:

    Bending Moment Equation

    \(\frac{M}{I} = \frac{\sigma }{y} = \frac{E}{R}\)

    \(M = \frac{I}{y}\sigma = Z\sigma \)

    For the constant bending moment: σ ∝ 1/Z

    So, bending stress is inversely proportional to the Section Modulus

    The strength of two beams of the same material can be compared by the section modulus values.

    The beam is stronger when section modulus is more, the strength of the beam depends on section modulus.

  • Question 2
    1 / -0

    The bending moment distribution in a beam is a function of distance x and it is given by M = (5x2 + 20x - 7) Nm. Find the shear stress at x = 2m if the shearing area is 2 mm2.

    Solution

    Concept:

    \({\rm{shear\;force}},{\rm{\;F}} = {\rm{}}\frac{{{\rm{dM}}}}{{{\rm{dx}}}}\)

    Calculation:

    Bending moment (M) = (5x2 + 20x - 7)

    Now,

    \({\rm{shear\;force}},{\rm{\;F}} = {\rm{}}\frac{{{\rm{dM}}}}{{{\rm{dx}}}}\)

    ∴ F = 10x + 20

    Now,

    (F)(x = 2 m) = 10(2) + 20

    F = 40 N

    Now,

    shear stress \({\rm({\tau })} = {\rm{}}\frac{{\rm{F}}}{{\rm{A}}} = {\rm{}}\frac{{40}}{2}\)

    ∴ τ = 20 MPa
  • Question 3
    1 / -0
    If a shaft is simultaneously subjected to torque T/2 and a bending moment of 2M, then the ratio of maximum bending stress to maximum shear stress will be______
    Solution

    Concept:

    Maximum bending across shaft occurs at either top or bottom fiber and it is given by the bending formula:

    \({{\rm{\sigma }}_{{\rm{max}}}} = \frac{{\rm{M}}}{{\rm{Z}}} = \frac{{2{\rm{M}}}}{{\frac{{\rm{\pi }}}{{64}}{{\rm{d}}^4}}} \times \frac{{\rm{d}}}{2} = \frac{{64{\rm{M}}}}{{{\rm{\pi }}{{\rm{d}}^3}}}\)

    Maximum shear stress is given by the twisting formula:

    \({{\rm{\tau }}_{{\rm{max}}}} = \frac{{{\rm{Tr}}}}{{\rm{I}}} = \frac{{\left( {\frac{1}{2}} \right) \times \left( {\frac{{\rm{d}}}{2}} \right)}}{{\frac{{\rm{\pi }}}{{32}}{{\rm{d}}^4}}} = \frac{{8{\rm{T}}}}{{{\rm{\pi }}{{\rm{d}}^3}}}\)

    \(\frac{{{{\rm{\sigma }}_{{\rm{\;max}}}}}}{{{{\rm{\tau }}_{{\rm{max}}}}}} = \frac{{\frac{{64{\rm{M}}}}{{{\rm{\pi }}{{\rm{d}}^3}}}}}{{\frac{{8{\rm{T}}}}{{{\rm{\pi }}{{\rm{d}}^3}}}}} = \frac{{8{\rm{M}}}}{{\rm{T}}}\)

  • Question 4
    1 / -0

    A rectangle beam 60 mm wide and 150 mm deep is simply supported over a span of 4 m. If the beam is subjected to uniformly distributed load of 4.5 kN/m, then the maximum bending stress induced in the beam is _____ MPa.

    Solution

    Concept:

    Section modules of rectangular section, \(Z = \frac{{d{b^2}}}{6}\;\)

    Calculation:

    Given:

    b = 60 mm, d = 150 mm

    \(∴ Z = \frac{{b{d^2}}}{6} = \frac{{60 \times {{150}^2}}}{6} = 225 \times {10^2}m{m^3}\;\)

    Now,

    The maximum bending moment at the center of a simply supported beam subjected to UDL is, \(M = \frac{{w{l^2}}}{8}\)

    w = 4.5 kN/m, l = 4 m = 4 × 103 mm

    \(∴ M = \frac{{w{l^2}}}{8} = \frac{{4.5 \times {{\left( {4 \times {{10}^3}} \right)}^2}}}{8} = 9 \times {10^6}N-mm\)

    \(∴ {σ _{bmax}} = \frac{M}{Z} = \frac{{9 \times {{10}^6}}}{{225 \times {{10}^3}}} \)

    ∴ σmax = 40 MPa

    Points to Remember:

    i) For rectangular section \(Z = \frac{{b{d^2}}}{6}\)

    ii) Maximum Bending moment in a simply supported beam subjected to UDL in at center and \(M = \frac{{w{l^2}}}{8}\)

    iii) Maximum Bending Stress \(= \frac{M}{Z}\)

  • Question 5
    1 / -0
    A solid circular shaft of diameter 80mm is subjected to a bending moment M and twisting moment T. Maximum bending stress due to M alone is equal to 1.5 times maximum shear stress due to T alone. The magnitude of maximum principle stress developed is 100 MPa. Torsion T on the shaft is _____ kN-m.
    Solution

    Concept:

    Using the flexural formula,

    \(\frac{M}{I} = \frac{E}{R} = \frac{{{\sigma _b}}}{y}\)

    And,

    \({\sigma _b} = \frac{{M.y}}{I}\)

    For the circular shaft, \(y = \frac{d}{2}\) and \(I = {\rm{\;}}\frac{\pi }{{64}}{d^4}\)

    \({\sigma _b} = \frac{{32M}}{{\pi {d^3}}}\)

    Using torsion equation,

    \(\frac{T}{J} = \frac{{G\theta }}{L} = \frac{\tau }{r}\)

    And,

    \(\tau = \frac{{T.r}}{J}\)

    For the circular shaft, \(\tau = {\tau _{max}}\) at \(r = \frac{d}{2}\) and \(J = {\rm{}}\frac{\pi }{{32}}{d^4}\)

    \(\tau = \frac{{16T}}{{\pi {d^3}}}\)

    Calculation:

    Using the given condition,

    \({\sigma _b} = 1.5 \times \tau\)

    \(\frac{{32M}}{{\pi {d^3}}} = 1.5 \times \frac{{16T}}{{\pi {d^3}}}\)

    \(M = 0.75{\rm{\;}}T\)

    Maximum principle stress is given as,

    \({\sigma _1} = \frac{{16}}{{\pi {d^3}}}\left[ {M + \sqrt {{M^2} + {T^2}} } \right]\)

    \(100 \times {10^6} = \frac{{16}}{{\pi\times {{0.08}^3}}}\left[ {0.75T + \sqrt {{{\left( {0.75T} \right)}^2} + {T^2}} } \right]\)

    ∴ T = 5.0265 kN-m
  • Question 6
    1 / -0
    A solid shaft of diameter d and length l is subjected to torque T. Another shaft B of length 1.5l with the same material and half the diameter is subjected to torque \(\frac{{3T}}{4}.\)The ratio of the angle of twist of shaft B to that of shaft A is _____.
    Solution

    Concept:

    Using torsion equation,

    \(\frac{T}{J} = \frac{{G\theta }}{l} = \frac{\tau }{r}\)

    \(Angle{\rm{\;}}of{\rm{\;}}twist,{\rm{\;}}\theta = {\rm{}}\frac{{Tl}}{{GJ}}\)

    Calculation:

    Given:

    \({d_B} = 0.5{\rm{\;}}{d_A}\)

    \({l_B} = 1.5{\rm{\;}}{l_A}\)

    \({T_A} = T{\rm{\;}}and{\rm{\;}}{T_B} = 0.75{\rm{\;}}T\)

    \({\theta _B} = \frac{{{T_B}{l_B}}}{{G \times \frac{\pi }{{32}}{{\left( {\frac{d}{2}} \right)}^4}}}\)

    \({\theta _B} = \frac{{0.75T \times 1.5l}}{{G \times \frac{\pi }{{32}}{{\left( {\frac{d}{2}} \right)}^4}}} = \frac{{576{\rm{\;}}Tl}}{{G\pi {d^4}}}\)

    \({\theta _A} = \frac{{{T_A}{l_A}}}{{G \times \frac{\pi }{{32}}{d^4}}}\)

    \({\theta _A} = \frac{{Tl}}{{G \times \frac{\pi }{{32}}{d^4}}} = \frac{{32{\rm{\;}}Tl}}{{G\pi {d^4}}}\)

    \(\frac{{{\theta _B}}}{{{\theta _A}}} = \frac{{\frac{{576{\rm{\;}}Tl}}{{G\pi {d^4}}}}}{{\frac{{32{\rm{\;}}Tl}}{{G\pi {d^4}}}}} = 18\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now