Self Studies

Strength of Materials Test 6

Result Self Studies

Strength of Materials Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Poisson ratio of a thin cylindrical shell is given as \(\frac{1}{m}\), the diameter is ‘d’, length ‘l’, thickness ‘t’ is subjected to an internal pressure ‘p’. Then, the ratio of longitudinal strain to hoop strain is
    Solution

    Concept:

    For a thin cylinder:

    Longitudinal stress: \({\sigma _L} = \frac{{pd}}{{4t}}\)

    Hoop stress: \({\sigma _h} = \frac{{pd}}{{2t}} = 2{\sigma _L}\)

    Circumferential or hoop strain:

    \({\epsilon_H} = \frac{1}{E}\left( {{\sigma _H} - ν {\sigma _L}} \right) = \frac{{{\sigma _L}}}{E}\left( {2 - ν } \right) = \frac{{pd}}{{4tE}}\left( {2 - ν } \right)\)

    Longitudinal Strain:

    \({\epsilon_L} = \frac{1}{E}\left( {{\sigma _L} - ν {\sigma _H}} \right) = \frac{{{\sigma _L}}}{E}\left( {1 - 2ν } \right) = \frac{{pd}}{{4tE}}\left( {1 - 2ν } \right)\)

    Calculation:

    Here ν = 1/m

    Longitudinal strain \({{\epsilon }_{L}}=\frac{P d}{4tE}\left( 1-\frac{2}{m} \right)\)

    Hoop strain, \({{\epsilon }_{h}}=\frac{P d}{4tE}\left( 2-\frac{1}{m} \right)\)

    \(\therefore \frac{{{\epsilon }_{L}}}{{{\epsilon }_{H}}}=\frac{1-\frac{2}{m}}{2-\frac{1}{m}}=\frac{m-2}{2m-1}\)
  • Question 2
    1 / -0
    The slenderness ratio of a 5 m column with both ends fixed if its cross section is square of side 50 mm is_______.
    Solution

    Concept:

    Slenderness Ratio, \(S=\frac{effective~length~of~column}{Radius~of~Gyration}=\frac{L_e}{k}\)

    Radius of Gyration \(k=\sqrt{\frac{{{I}_{min}}}{A}}\)

    Calculation:

    Length of column = 5 m

    Side of the square (b) = 50 mm = 0.05 m 

    \(\therefore k=\sqrt{\frac{{{b}^{4}}}{12\times {{b}^{2}}}}=\frac{b}{\sqrt{12}}\)

    Now, given condition is both ends fixed

    \(\therefore L_e=\frac{L}{2}\)

    \(\Rightarrow S=\frac{L_e}{k}\)

    \(\therefore S=\frac{L}{2}\times \frac{\sqrt{12}}{b}=\frac{5\times \sqrt{12}}{2\times 0.05}=173.2\)
  • Question 3
    1 / -0
    If diameter of a long column is reduced by 25%, the percentage reduction in Euler’s buckling load for the same end condition is
    Solution

    Concept:

    \({{P }_{e}}=\frac{{{\pi }^{2}}E{{I}_{min}}}{L{{e}^{2}}}\Rightarrow {{P}_{e}}\propto {{I}_{min}}\)

    \({{I}_{min}}=\frac{\pi }{64}~{{d}^{4}}\Rightarrow {{I}_{min}}\propto {{d}^{4}}\)

    \(\therefore \frac{{{P}_{2}}}{{{P}_{1}}}=\frac{{{I}_{2}}}{{{I}_{1}}}={{\left( \frac{{{d}_{2}}}{{{d}_{1}}} \right)}^{4}}\)

    Calculation:

    And d2: 0.75 d1

    \(\therefore \frac{{{P}_{2}}}{{{P}_{1}}}=0.3164\)

    % reduction \(=\frac{{{P}_{1}}-{{P}_{2}}}{{{P}_{1}}}\times 100=0.6836\times 100=68.36%\)
  • Question 4
    1 / -0
    Find maximum shear stress in the plane of a stored gas cylindrical tank of inner radius 5 m and wall thickness 30 mm. The gauge pressure of the gas is 1 MPa. The maximum shear stress (in MPa) in the wall is _____.
    Solution

    Concept:

    \({\rm{Hoop\;stress}},{\rm{\;}}({{\rm{\sigma }}_{\rm{h}}}) = \frac{{{\rm{Pd}}}}{{2{\rm{t}}}}\)

    \({\rm{Longitudinal\;stress}}\left( {{{\rm{\sigma }}_{\rm{c}}}} \right) = \frac{{{\rm{Pd}}}}{{4{\rm{t}}}}\)

    Calculation:

    Considering plane stress conditions, we have

    \({\rm{Hoop\;stress}},{\rm{\;}}({{\rm{\sigma }}_{\rm{h}}}) = \frac{{{\rm{Pd}}}}{{2{\rm{t}}}}\)

    \({\rm{Hoop\;stress}},{\rm{\;}}({{\rm{\sigma }}_{\rm{h}}}) = \frac{{1 \times 10 \times 1000}}{{2 \times 30}}\)

    Hoop stress, σh = 166.67 MPa

    Now,

    \({\rm{Longitudinal\;stress}}\left( {{{\rm{\sigma }}_{\rm{c}}}} \right) = \frac{{{\rm{Pd}}}}{{4{\rm{t}}}}\)

    \({\rm{Longitudinal\;stress}}\left( {{{\rm{\sigma }}_{\rm{c}}}} \right) = \frac{{1 \times 10 \times 1000}}{{4 \times 30}}\)

     Longitudinal stress (σc) = 83.33 MPa

    Now,

    Maximum shear stress in-plane is given as,

    \({\tau _{max}} = \frac{{{\sigma _h} - {\sigma _l}}}{2}\)

    τmax = 41.67

    ∴ τmax = 41.67 MPa
  • Question 5
    1 / -0
    A strut of length 5 m is fixed at one end and the other end is free. The Euler’s buckling load is 50 kN. If both the ends of the strut are fixed, what will be the Euler’s buckling load in kN?
    Solution

    Concept:

    Euler buckling load for a column is given by,

    \({{\rm{P}}_{\rm{E}}}{\rm{\;}} = {\rm{\;}}\frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{\rm{L}}_{\rm{e}}^2}}\)

    Where, Le is the effective length of the column that depends on the end support conditions, and EI is the flexural rigidity of the column.

    Now, effective length (Le) for different end conditions in terms of actual length (L) are listed in the following table:

    Support Conditions

    Effective length (Le)

    Both ends hinged/pinned

    Le = L

    One end hinged other end fixed

    Le = L/√2

    Both ends fixed

    Le = L/2

    One end fixed and other end free

    Le = 2L


    Calculation:

    Given, Euler’s buckling load is 50 kN for a strut with one end fixed and the other end is free.

    ∴ Le = 2L

    \(50{\rm{\;}} = {\rm{\;}}\frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{{\left( {2{\rm{L}}} \right)}^2}}}{\rm{\;\;}}\therefore \frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{{\rm{L}}^2}}}{\rm{\;}} = {\rm{\;}}50 \times 4{\rm{\;}} = {\rm{\;}}200\)

    For the second case, the end conditions are given as both ends are fixed.

    ∴ Le = L/2

    \({{\rm{P}}_{\rm{E}}}{\rm{\;}} = {\rm{\;}}\frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{{\left( {\frac{{\rm{L}}}{2}} \right)}^2}}}{\rm{\;}} = {\rm{\;}}4 \times \frac{{{{\rm{\pi }}^2}{\rm{EI}}}}{{{{\rm{L}}^2}}}{\rm{\;}} = {\rm{\;}}4 \times 200{\rm{\;}} = {\rm{\;}}800{\rm{\;kN}}\)

    ∴ The Euler buckling load for the strut with both ends fixed is 800 kN.

    Note: Actual length = 5 m is not required for solving this question.

  • Question 6
    1 / -0
    A thin cylindrical shell 2.5 m long and a diameter of 1.25 m has a thickness of 20 mm. Then the change in dimension of diameter of the shell which is subjected to measure of 1.5 MPa is ______mm (Take Young's Modulus E = 200 GPa, and Poisson's Ratio μ = 0.3)
    Solution

    Concept:

    For a thin cylinder:

    Longitudinal stress: \({\sigma _L} = \frac{{pd}}{{4t}}\)

    Hoop stress: \({\sigma _h} = \frac{{pd}}{{2t}} = 2{\sigma _L}\)

    Longitudinal Strain:

    \({\epsilon_L} = \frac{1}{E}\left( {{\sigma _L} - \mu {\sigma _H}} \right) = \frac{{{\sigma _L}}}{E}\left( {1 - 2\mu } \right) = \frac{{pd}}{{4tE}}\left( {1 - 2\mu } \right)\)

    Circumferential or hoop strain:

    \({\epsilon_H} = \frac{1}{E}\left( {{\sigma _H} - \mu {\sigma _L}} \right) = \frac{{{\sigma _L}}}{E}\left( {2 - \mu } \right) = \frac{{pd}}{{4tE}}\left( {2 - \mu } \right)\)

    Calculation:

    Given, l = 2.5 m = 2500 mm, d = 1.25 m = 1250 mm, t = 20 mm

    P = 1.5 MPa, E = 200 GPa = 200 × 103 MPa, μ = 0.3

    In cylindrical shell Hoop strain \({{\epsilon }_{H}}=\frac{\delta d}{d}=\frac{Pd}{4tE}~\left( 2-\mu \right)\)

    \(\Rightarrow \delta D=\frac{P{{d}^{2}}}{4tE}\left( 2-\mu \right)\)

    \(\delta D=\frac{1.5\times {{1250}^{2}}}{4\times 20\times 200\times {{10}^{3}}}\left( 2-0.3 \right)\)

    δD = 0.249 mm
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now