`
Self Studies

Mathematics Test-1

Result Self Studies

Mathematics Test-1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    What is \(\lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\) equal to?

    Solution

    Given:

    \(\lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\)

    As we know,

    \(\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)\)

    \(\therefore \lim _{x \rightarrow 0} \frac{\sin x \log (1-x)}{x^{2}}\)

    \(=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \lim _{x \rightarrow 0} \frac{\log (1-x)}{x}\)

    \(=1 \times \lim _{x \rightarrow 0} \frac{\log (1+(-x))}{x} \quad\) \( (\because\lim _{x \rightarrow 0} \frac{\sin x}{x}=1)\)

    \(=\lim _{x \rightarrow 0} \frac{\log (1+(-x))}{-(-x)}\)

    \(=-1 \times \lim _{x \rightarrow 0} \frac{\log (1+(-x))}{(-x)}\)

    \(=-1 \times 1 \quad\) \((\because\lim _{x \rightarrow 0} \frac{\log x}{x}=1)\)

    \(=-1\)

  • Question 2
    4 / -1

    Find the value of \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    Solution

    Given that:

    \(\underset{{x \rightarrow 1}}{\lim} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}\)

    On putting the limit in above equation we will get\(\frac{0}{0} \) form.

    Therefore, we can cancel a factor going to zero out of the numerator and denominator.

    We have,

    \(\underset{{ {{x} \rightarrow 1} }}{\lim}\frac{(2 {x}-3)(\sqrt{{x}}-1)}{2 {x}^{2}+{x}-3}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)({x}-1)}\)

    \(=\underset{{{{x} \rightarrow 1}}}{\lim} \frac{(2 {x}-3)(\sqrt{{x}}-1)}{(2 {x}+3)(\sqrt{{x}}-1)(\sqrt{{x}}+1)}\)

    Factor \((\sqrt{x}-1)\) becomes zero at \(x\) tends to 1 so, we need to cancel this factor from numerator and denominator.

    \(=\underset{{{x \rightarrow 1}}}{\lim} \frac{(2 x-3)}{(2 x+3)(\sqrt{x}+1)}\)

    \(=\frac{2-3}{(2+3)(\sqrt{1}+1)}\)

    \(=\frac{-1}{10}\)

  • Question 3
    4 / -1
    A line makes angle \(\alpha, \beta, y\) with \(x\)-axis, \(y\)-axis and \(z\)-axis respectively then \(\cos 2 \alpha+\cos\) \(2 \beta+\cos 2 \gamma\) is equal to:
    Solution

    As \( \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1 \)

    \(\Rightarrow \frac{1+\cos 2 \alpha}{2}+\frac{1+\cos 2 \beta}{2}+\frac{1+\cos 2 \gamma}{2}=1 \)

    \( \Rightarrow \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1\)

  • Question 4
    4 / -1

    Find the coefficient of \(x^2\)in\(\left(3 x-\frac{1}{x^{2}}\right)^{6}\)

    Solution
    \(T_{n}={ }^{n} C_{r}(a)^{n-r}\)
    \(=\left(3 x-\frac{1}{x^{2}}\right)^{6}={ }^{6} C_{0}(3 x)^{6} \cdot\left(\frac{1}{x^{2}}\right)^{0}+{ }^{6} C_{1}(3 x)^{5} \cdot\left(\frac{1}{x^{2}}\right)^{1}+{ }^{6} C_{2}(3 x)^{4}\left(\frac{1}{x^{2}}\right)^{2}\)
    \(+{ }^{6} C_{3}(3 x)^{3}\left(\frac{1}{x^{2}}\right)^{3}+{ }^{6} C_{4}(3 x)^{2} \cdot\left(\frac{1}{x^{2}}\right)^{4}+{ }^{6} C_{5}(3 x)^{1} \cdot\left(\frac{1}{x^{2}}\right)^{5}+{ }^{6} C_{6}(3 \mathrm{x})^{0}\left(\frac{1}{\mathrm{x}^{2}}\right)^{6}\)
    We can see that there is no term of \(x^{2}\) so the coefficient is 0.
  • Question 5
    4 / -1

    If \(\alpha\) and \(\beta\) are the roots of the equation \(4 x^{2}+2 x-1=0\), then which one of the following is correct?

    Solution

    Given,

    \(4 x^{2}+2 x-1=0\)

    \(x=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}\)

    \(\Rightarrow x=\frac{-2 \pm \sqrt{2^{2}-4(4)(-1)}}{2(4)}\)

    \(\Rightarrow \alpha=\frac{-1+\sqrt{5}}{4}\) और\(\beta=\frac{-1-\sqrt{5}}{4}\)

    As we know that \(\sin 18^{\circ}=\frac{-1+\sqrt{5}}{4}\) and \(\sin 54^{\circ}=\frac{1+\sqrt{5}}{4}\)

    So, We can say that \(\alpha=\sin 18^{\circ}\) and \(\beta=-\sin 54^{\circ} \quad \ldots\) (i)

    Now, From the given formula

    \(\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta\)

    On putting \(\theta=18^{\circ}\) in the above trigonometric formula, we get

    \(\Rightarrow \sin 54^{\circ}=3 \sin 18^{\circ}-4 \sin ^{3} 18^{\circ}\quad \ldots\) (ii)

    From (i) and (ii), we get

    \(\Rightarrow-\beta=3 \alpha-4 \alpha^{3}\)

    \(\Rightarrow \beta=4 \alpha^{2}-3 \alpha\)

    \(\therefore\) The correct relation is \(\beta=4 \alpha^{2}-3 \alpha .\)

  • Question 6
    4 / -1

    The mean deviation of the data 3, 10, 10, 4, 7, 10, 5 is:

    Solution

    Given,

    Numbers are 3, 10, 10, 4, 7, 10, 5

    Mean \(=\frac{\text { Sum of all the observations }}{\text { Total number of observations }}\)

    \(=\frac{3+10+10+4+7+10+5}{7}\)

    \(=\frac{49}{7}=7\)

    Deviation of all the values from mean:

    \(7-3=4\)

    \(10-7=3\)

    \(10-7=3\)

    \(7-4=3\)

    \(7-7=0\)

    \(10-7=3\)

    \(7-5=2\)

    Mean Deviation \(=\frac{4+3+3+3+0+3+2}{7}\)

    \(=\frac{18}{7}\)

  • Question 7
    4 / -1

    Let the unit vectors a and \(b\) be perpendicular to each other and the unit vector \(c\) be inclined at an angle \(\theta\) to both a and b. If \(c=x a+y b+z(a \times b)\), then:

    Solution

    \(c=x a+y b+z(a \times b)\)

    Let \(c \cdot a = x , c \cdot b = y , x = y =\cos \theta\)

    Now, C.C \(=|c|^2\)

    So, \([ xa + yb + z ( a \times b )] \cdot[ xa + yb + z ( a \times b )]=| c |^2\)

    \(\Rightarrow 2 x ^2+ z ^2| a \times b |^2=1[\because c\) is a unit vector\(]\)

    \(\Rightarrow 2 x ^2+ z ^2\left[| a |^2| b |^2-( a \cdot b )^2\right]=1\)

    \(\Rightarrow 2 x ^2+ z ^2[1-0]=1 \quad[\because a \perp b \therefore a \cdot b =0]\)

    \(\Rightarrow 2 x ^2+ z ^2=1\Rightarrow z ^2=1-2 x ^2\)

    \(=1-2 \cos ^2 \theta=-\cos 2 \theta\)

  • Question 8
    4 / -1

    If \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\frac{2 \pi}{5}\), then \(\cos ^{-1} \mathrm{x}+\sin ^{-1} \mathrm{y}\) is:

    Solution

    Given, \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\frac{2 \pi}{5}\)

    We know that, \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}=\frac{\pi}{2}\)

    \(\sin ^{-1} \mathrm{x}=\frac{\pi}{2}-\cos ^{-1} \mathrm{x}\)

    Similarly, \(\sin ^{-1} \mathrm{y}+\cos ^{-1} \mathrm{y}=\frac{\pi}{2}\)

    \(\cos ^{-1} \mathrm{y}=\frac{\pi}{2}-\sin ^{-1} \mathrm{y}\)

    Again, \(\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{y}=\frac{2 \pi}{5}\)

    \(\Rightarrow \frac{\pi}{2}-\cos ^{-1} x+\frac{\pi}{2}-\sin ^{-1} y=\frac{2 \pi}{5}\)

    \(\Rightarrow \pi-\cos ^{-1} x-\sin ^{-1} y=\frac{2 \pi}{5}\)

    Therefore, \(\cos ^{-1} x+\sin ^{-1} y=\frac{3 \pi}{5}\)

  • Question 9
    4 / -1

    Find the area between the curve \(y=\sin x\) and lines \(x=-\frac{\pi}{3}\) to \(x=\frac{\pi}{3}\).

    Solution

    Curve 1: \(y=\sin x=f(x)\) (say)

    Curve 2: Lines \({x}=-\frac{\pi}{3}\) and \({x}=\frac{\pi}{3}\)

    It can be drawn as follows:

    According to the figure the sum of area curve \(\mathrm{OAB}\) and curve OCD.

    Here, \(\mathrm{OAB}\) and \(\mathrm{OCD}\) are equal and limit 0 to \(\frac{\pi}{3}\).

    So,  Area \(=2 \times\) area of \(\mathrm{OAB}\).

    The area between the curves \(y_{1}=f(x)\) and \(y_{2}=g(x)\) is given by: 

    Area enclosed \(=\left|\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mathrm{dx}\right|\)

    Where, \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) are the intersections of curves \(\mathrm{y}_{1}\) and \(\mathrm{y}_{2}\)

    Now, the required area (A) is,

    Area of \(O A B=\left|\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\right|\)

    \(=\left|\int_{0}^{\frac{\pi}{3}} \sin x ~d x\right|\)

    \(=\left|[-\cos x]_{0}^{\frac{\pi}{3}}\right|\)

    \(=\left|-\cos \frac{\pi}{3}+\cos 0^{\circ}\right|\)

    \(=\left|1-\frac{1}{2}\right|\) \(=\frac{1}{2}\)

    \(\therefore\) Shaded Area \(=2 \times \frac{1}{2}=1\)

  • Question 10
    4 / -1

    Find the sum of the series 5 + 55 + 555 + ..... upto n terms.

    Solution

    Given,

    \(5+55+555+\ldots \ldots\) to \(n\) terms

    \(=5 \times[1+11+111+\ldots . .\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times [9+99+999+\ldots\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots\right.\) to \(n\) terms \(]\)

    \(=\frac{5}{9} \times\left[\left(10+10^{2}+10^{3}+\ldots .\right.\right.\) to \(n\) terms \(\left.)-n\right]\)

    So, \(a=\frac{5}{9}, r=10\)

    As we know that,

    \(S_{n}=a\left(\frac{1-r^{n}}{1-r}\right)\) for \(|r|<1\)

    \( S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \) for \(|r|>1 \)

    As common ratio \((r)>1 \), so the sum of series is given by,

    \( S_{n}=a\left(\frac{r^{n}-1}{r-1}\right) \)

    \(\therefore S_n =\frac{5}{9} \times\left[\frac{10 \times\left(10^{n}-1\right)}{(10-1)}-n\right] \)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{10 \times\left(10^{n}-1\right)}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{10^1 \times 10^{n}-10}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{(10)^{n+1}-10}{9}-n\right]\)

    \(\Rightarrow S_n=\frac{5}{9} \times \left[\frac{(10)^{n+1}-10-9n}{9}\right]\)

    \(\Rightarrow S_n=\frac{5}{81} \cdot \left(10^{n+1}-9 n-10\right)\)

    So, the required sum is \(\frac{5}{81} \cdot\left(10^{n+1}-9 n-10\right)\).

  • Question 11
    4 / -1

    The cubic equation \(x^{3}-2 x-8=0\), has:

    Solution

    Given:

    \(f(x)=x^{3}-2 x-8\)

    We can start solving by finding the values of \(x\), where \(f(x)\) is changing sign. \(f^{\prime}(x)=3 x^{2}-2\), equating it to zero we get,

    \(3 x^{2}-2=0\)

    \(x=\pm \sqrt{\frac{2}{3}}\)

    \(f\left(\sqrt{\frac{2}{3}}\right)=-9.089\) and \(f\left(-\sqrt{\frac{2}{3}}\right)=-6.911\)

    At both these values of \(x, f(x)\) is negative so there will be only one real root and rest \(2\) roots of cubic equation will be imaginary.

    Imaginary roots always exist in pairs.So, to guess the position of real root, we can check values of \(f(x)\) at few points,

    \(f(0)=-8, f(1)=-9, f(2)=-4, f(3)=13, f(4)=48\)

    From here, we can see that,

    The sign of the function does not change between \(3\) and \(4\), so there is no real roots between \(3\) and \(4\).

    The sign of the function does not change between \(1\) and \(2\), so there are no real roots between \(1\) and \(2\).

    The sign of the function changes between \(2\) and \(3\), so there is at least one real root between \(2\) and \(3\).

  • Question 12
    4 / -1

    Find the cofactor matrix for the matrix\(A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ -2 & 3 & 5 \\ 4 & -2 & 1\end{array}\right]\)?

    Solution

    Given: \(A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ -2 & 3 & 5 \\ 4 & -2 & 1\end{array}\right]\)

    Here, we have to find the cofactor matrix for the given matrix A As we know that, cofactor of an element \(\mathrm{a}_{\mathrm{ij}}\) is given by:

    \(C_{i j}=\left\{\begin{array}{c}M_{i j}, \text { when } i+j \text { is even } \\ -M_{i j}, \text { when } i+j \text { is odd }\end{array}\right.\)

    \(C_{11}=(-1)^{2} \times\left|\begin{array}{cc}3 & 5 \\ -2 & 1\end{array}\right|=13\)

    \(C_{12}=(-1)^{3} \times\left|\begin{array}{cc}-2 & 5 \\ 4 & 1\end{array}\right|=22\)

    \(C_{13}=(-1)^{4} \times\left|\begin{array}{cc}-2 & 3 \\ 4 & -2\end{array}\right|=-8\)

    Similarly, we can say that \(\mathrm{C}_{21}=-8, \mathrm{C}_{22}=-13\) and \(\mathrm{C}_{23}=6\)

    Similarly, we can also say that, \(\mathrm{C}_{31}=1, \mathrm{C}_{32}=-1\) and \(\mathrm{C}_{33}=1\)

    So, the required cofactor matrix is \(\left[\begin{array}{ccc}13 & 22 & -8 \\ -8 & -13 & 6 \\ 1 & -1 & 1\end{array}\right]\)

  • Question 13
    4 / -1

    Find graphically, the maximum value of \(\mathrm{z}=2 \mathrm{x}+5 \mathrm{y}\), subject to constraints given below:

    \(2 \mathrm{x}+4 \mathrm{y} \leq 8 \)

    \(3 \mathrm{x}+\mathrm{y} \leq 6 \)

    \(\mathrm{x}+\mathrm{y} \leq 4 \)

    \(\mathrm{x} \geq 0, \mathrm{y} \geq 0\)

    Solution

    Given:

    \(\mathrm{z}=2 \mathrm{x}+5 \mathrm{y}\)

    \(2 \mathrm{x}+4 \mathrm{y} \leq 8 \)

    \(\Rightarrow \mathrm{x}+2 \mathrm{y} \leq 4\)

    \(3 x+y \leq 6, x+y \leq 4, x \geq 0, y \geq 0\)

    Draw the lines \(\mathrm{x}+2 \mathrm{y}=4\) (passes through (4,0\(),(0,2))\)

    \(3 \mathrm{x}+\mathrm{y}=6\) (passes through \((2,0),(0,6)\) and

    \(\mathrm{x}+\mathrm{y}=4\) (passes through \((4,0),(0,4)\)

    Shade the region satisfied by the given inequations;

    The shaded region in the figure gives the feasible region determined by the given inequations.

    Solving \(3 \mathrm{x}+\mathrm{y}=6\) and \(\mathrm{x}+2 \mathrm{y}=4\) simultaneously, we get

    \(\mathrm{x}=\frac{8}{5}\) and \(\mathrm{y}=\frac{6}{5}\)

    We observe that the feasible region \(\mathrm{OABC}\) is a convex polygon and bounded and has corner points.

    \(\mathrm{O}(0,0), \mathrm{A}(2,0), \mathrm{B}\left(\frac{8}{5}, \frac{6}{5}\right), \mathrm{C}(0,2)\)

    The optimal solution occurs at one of the corner points.

    At \(\mathrm{O}(0,0), \mathrm{z}=2×0+5×0=0\)

    At \(\mathrm{A}(2,0),~~ \mathrm{z}=2×2+5×0=4\)

    At B \(\left(\frac{8}{5}, ~~\frac{6}{5}\right), z=2 × \frac{8}{5}+5 × \frac{6}{5}=\frac{46}{5}\)

    At \(\mathrm{C}(0,2),~~ \mathrm{z}=2×0+5×2=10\)

    Therefore, z maximum value at \(\mathrm{C}\) and maximum value \(=10\)


  • Question 14
    4 / -1

    Find the angle between the line \(\frac{x-1}{3}=\frac{y+1}{-1}=\frac{z-3}{2}\) and the plane \(3 x+4 y+z+5=0\).

    Solution

    Given,

    Equation of line: \(\frac{x-1}{3}=\frac{y+1}{-1}=\frac{z-3}{2}\)

    Equation of plane: \(3 x+4 y+z+5=0\)

    As we know,

    The angle between the line \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\) and the plane \(a_{2} x+b_{2} y+c_{2} z+d=0\) is given by,

    \(\sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\left(\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\right)\left(\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}\right)}\)

    On comparing given equation of line and plane with above equation, we get

    \(a_{1}=3, b_{1}=-1, c_{1}=2, a_{2}=3, b_{2}=4\) and \(c_{2}=1\)

    \(\sin \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\left(\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\right)\left(\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}\right)}\)

    \(\Rightarrow \sin \theta=\frac{3\times 3 +(-1)\times 4+2 \times 1}{\left(\sqrt{(3)^{2}+(-1)^{2}+(2)^{2}}\right)\left(\sqrt{(3)^{2}+(4)^{2}+(1)^{2}}\right)}\)

    \(\Rightarrow \sin \theta=\frac{9 -4+2 }{\left(\sqrt{9+1+4}\right)\left(\sqrt{9+16+1}\right)}\)

    \(\Rightarrow \sin \theta=\frac{7}{\sqrt{14} \cdot \sqrt{26}}\)

    \(\Rightarrow \sin \theta=\sqrt{\frac{7}{52}} \)

    \(\Rightarrow \theta=\sin ^{-1}\left(\sqrt{\frac{7}{52}}\right)\)

  • Question 15
    4 / -1

    Find the general solution of given differential equation \(\frac{x d y}{d x}+3 y=4 x^3 ?\)

    Solution

    Given that,

    \(\Rightarrow \frac{ xdy }{ dx }+3 y =4 x ^3\)

    Now,

    \(\Rightarrow \frac{ dy }{ dx }+\frac{3 y }{ x }=4 x ^2\)

    By comparing with \(\frac{ dy }{ dx }+ Py = Q\)

    \( \Rightarrow P=\frac{3 } x \text { and } Q=4 x^2 \)

    \( \Rightarrow \text { I.F. }=e^{\int P d x}=e^{\int \frac{3}{x} d x} \)

    \(\Rightarrow \text { I.F. }=e^{3 \ln x} \)

    \( \Rightarrow \text { I.F. }=e^{\ln x^3}\)

    \( \Rightarrow \text { I.F. }=x^3\left(\because e^{\ln x}=x\right)\)

    Now general solution will be,

    \( \Rightarrow y \cdot( I \cdot F \cdot)=\int( Q \cdot( I \cdot F \cdot)) dx + c \)

    \( \Rightarrow y \cdot\left( x ^3\right)=\int\left(4 x ^2 \cdot\left( x ^3\right)\right) dx + c\)

    \( \Rightarrow x ^3 \cdot y =\int 4 x ^5 dx + c \)

    \( \Rightarrow x ^3 \cdot y =4 \frac{ x ^6}{6}+ c \)

    \( \Rightarrow x^3 \cdot y=\frac{2}{3} \cdot x^6+c\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now