Self Studies

Mathematics Test-10

Result Self Studies

Mathematics Test-10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The length of the normal from origin to the plane \(x+2 y-2 z=9\) is equal to:

    Solution

    We know that normal is always perpendicular to the plane.

    Given:

    Equation of the plane is,

    \(x+2 y-2 z=9\)

    \(\Rightarrow x+2 y-2 z-9=0\)

    Now we have to find the distance from the origin \((0,0,0)\).

    We know that distance \(=\left|\frac{{Ax}_{1}+{By}_{1}+{Cz}_{1}-{d}}{\sqrt{{A}^{2}+{B}^{2}+{C}^{2}}}\right|\)

    \(\therefore\) Distance \(=\left|\frac{0+0-0-9}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}\right|=\frac{9}{3}=3\) units

  • Question 2
    4 / -1
    If \(3 x^{2}+x y-y^{2}-3 x+6 y+k=0\) represents a pair of lines, then \(k\) is equal to
    Solution
    \(3 x^{2}+x y-y^{2}-3 x+6 y+k=0 \ldots \ldots \ldots .\) (i)
    Condition for pair of lines:
    \(\Delta=\left|\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right|=0\)
    Comparing the equation with standard equation of straight line \(a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0\)
    \(\Rightarrow a=3, b=-1, c=k, h=\frac{1}{2}, g=\frac{-3}{2}, f=3\)
    So, substituting the values in the above condition:
    \(\Delta=\left|\begin{array}{ccc}3 & \frac{1}{2} & \frac{-3}{2} \\ \frac{1}{2} & -1 & 3 \\ \frac{-3}{2} & 3 & k\end{array}\right|=0\)
    \(\Rightarrow 3(-k-9)-\frac{1}{2}\left(\frac{k}{2}+\frac{9}{2}\right)-\frac{3}{2}\left(\frac{3}{2}-\frac{3}{2}\right)=0\)
    \(3(-k-9)-\frac{1}{4}(k+9)=0\)
    \(\Rightarrow{k}=-9\)
  • Question 3
    4 / -1
    The equation \(2 x^{2}+k x+3=0\) has two equal roots, then the value of \(k\) is
    Solution
    Here \(a=2, b=k, c=3\)
    Since the equation has two equal roots
    \(\therefore b^{2}-4 a c=0\)
    \(\Rightarrow({k})^{2}-4 \times 2 \times 3=0\)
    \(\Rightarrow k^{2}=24\)
    \(\Rightarrow k=\pm \sqrt{24}\)
    \(\therefore {k}=\pm \sqrt{4 \times 6}=\pm 2 \sqrt{6}\)
  • Question 4
    4 / -1
    If \(\left[\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right]\) has no inverse, then the real value of \(x\) is
    Solution
    Given,
    \(A=\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|\) has no inverse.
    If \(|\mathrm{A}|=0\)
    \(\left|\begin{array}{ccc}1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1\end{array}\right|=0\)
    \(\Rightarrow 1(x+1)-1(-1+x)+x\left(-1-x^{2}\right)=0\)
    \(\Rightarrow x+1+1-x-x-x^{3}=0\)
    \(\Rightarrow -x^{3}-x+2=0\)
    \(\Rightarrow {x}^{3}+{x}-2=0\)
    \(\Rightarrow (x-1)\left(x^{2}+x+2\right)=0\)
    \(\Rightarrow x=1\) real value
  • Question 5
    4 / -1
    Ashu studies at X classes and her probability of selection in IIT-JEE is \(\frac {4}{5} .\) Ridhima took coaching at Y and the probability of her selection is \(\frac {2}{3} .\) What is the probability that only \(1\) of them cracks the Exam?
    Solution

    Let, 'A' stands for Ashu and 'R' stands for Ridhima and 'E' represents the Event of selection in IIT-JEE.

    So, according to the question

    \(P(A)=\frac{4}{5}\)

    \(P(R)=\frac{2}{3}\)

    \(P(E)=P\left(A^{\prime} R\right)+P\left(A R^{\prime}\right)\)

    \(P(E)=\frac{1}{5} \times \frac{2}{3}+\frac{4}{5} \times \frac{1}{3}\)

    \(P(E)=\frac{2}{15}+\frac{4}{15}\)

    \(P(E)=\frac{6}{15}\)

    \(P(E)=\frac{2}{5}\)

  • Question 6
    4 / -1
    If the line \(2 x-y+\lambda=0\) is a diameter of the circle \(x^{2}+y^{2}+6 x-6 y+5=0\) then \(\lambda=?\)
    Solution
    Equation of circle is \(x^{2}+y^{2}+6 x-6 y+5=0\) \(\Rightarrow x^{2}+6 x+y^{2}-6 y=-5\)
    Applying the square method
    \(\Rightarrow(x+3)^{2}+(y-3)^{2}=(\sqrt{13})^{2} \ldots \ldots . .(\mathrm{i})\)
    Comparing the above equation with \((x-h)^{2}+(y-k)^{2}=(r)^{2}\) we get,
    Center as \((-3,3)\) and radius as \(\sqrt{13}\).
    As the center of the circle lies on diameter, it will satisfy the equation of diameter.
    So, on putting \((-3,3)\) in equation of diameter we get,
    \(2(-3)-(3)+\lambda=0\)
    \(\Rightarrow-6-3-\lambda=0\)
    \(\Rightarrow \lambda=9\)
  • Question 7
    4 / -1
    \(\lim _{x \rightarrow 0}\left\{\frac {\left(a^{x}-b^{x}\right)}{ x}\right\} \text { is equal to }\)
    Solution
    \(\lim _{x \rightarrow 0}\left\{\frac {\left(a^{x}-b^{x}\right)}{x}\right\}\)
    \(=\lim _{x \rightarrow 0}\left\{\frac {\left(a^{x}-b^{x}-1+1\right)}{x}\right\}\)
    \(=\lim_{x\rightarrow0}\frac {(a^x-1)-(b^x-1)}{x}\)
    \(=\lim_{x\rightarrow0}\frac {(a^x-1)}{x}-\frac {(b^x-1)}{x}\)
    \(=\lim _{x \rightarrow 0}\frac {\left(a^{x}-1\right)}{x}-\lim _{x \rightarrow 0}\frac {\left(b^{x}-1\right)}{x}\)
    \(=\log a-\log b\)
    \(=\log (\frac {a}{b})\)
  • Question 8
    4 / -1

    Consider the following in respect of the function \({f}({x})=|{x}-3|\):

    1. \(f(x)\) is continuous at \(x=3\)

    2. \(f(x)\) is differentiable at \(x=0\)

    Which of the above statements is/are correct?

    Solution

    \({LHL}=\lim _{{x} \rightarrow 3^{-}} {f}({x})=\lim _{{x} \rightarrow 3^{-}}-({x}-3)=0\)

    \({RHL}=\lim _{{x} \rightarrow 3^{+}} {f}({x})=\lim _{{x} \rightarrow 3^{+}}({x}-3)=0\)

    \(f(x=3)=0\)

    \(\therefore f(x)\) is continuous at \(x=3\)

    \({LHD}=\lim _{{h} \rightarrow 0^{-}} \frac{{f}(0-0)-{f}(0)}{-{h}}\)

    \(=\lim _{{h} \rightarrow 0^{-}} \frac{f(0)-f(0)}{-h}\)

    \(=0\)

    \({RHD}=\lim _{{h} \rightarrow 0^{+}} \frac{{f}({a}+{h})-{f}({a})}{{h}}\)

    \(=0\)

    \({LHD}={RHD}\), so \({f}({x})\) is differentiable at \({x}=0\)

  • Question 9
    4 / -1
    The perimeter of a triangle \(\mathrm{ABC}\) is \(6\) times the arithmetic mean of the sines of its angles.If the side \(\mathrm{a}\) is \(1,\) then \(\angle \mathrm{A}\) is
    Solution
    Let \(\mathrm {\sin A, \sin B, \sin C}\) be the three angles.
    By using the formula, Perimeter of \(\triangle \mathrm{ABC}=6 \times\) Arithmetic mean of sines of its angles.
    \(\Rightarrow 2 \mathrm{~s}=6 \times\left(\frac{\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}}{3}\right)\)
    \(\therefore \mathrm{s=\sin A+\sin B+\sin C}\) (on simplification)
    Using sine rule we have,
    \(\mathrm{s}=\mathrm{a k}+\mathrm{b k}+\mathrm{c k}\)
    \(\Rightarrow \mathrm{s}=(\mathrm {a+b+c) k}\)
    \(\Rightarrow \mathrm{s}=(2 \mathrm{~s}) \mathrm{k}\)
    \(\therefore 1=2 \mathrm{k}\) or \(\mathrm{k}=\frac{1}{2}\)
    \(\Rightarrow \sin \mathrm A=\mathrm a \mathrm{k}=1 \times \frac{1}{2}\)
    \(\therefore \angle \mathrm{A}=30^{\circ}\)
  • Question 10
    4 / -1

    If \(f(x)=2 x-x^{2}\), then what is the value of \(f(x+2)+f(x-2)\) when \(x=0\) ?

    Solution

    Given:

    \(f(x)=2 x-x^{2}\)

    To Find: \(f(x+2)+f(x-2)\) when \(x=0\)

    Now,

    \(f(x+2)=2(x+2)-(x+2)^{2} \)

    \(f(x-2)=2(x-2)-(x-2)^{2}\)

    Adding above equation,

    \(f(x+2)+f(x-2)=2(x+2)-(x+2)^{2}+2(x-2)-(x-2)^{2}\)

    Put \(x=0\)

    \(f(2)+f(-2)=2(0+2)-(0+2)^{2}+2(0-2)-(0-2)^{2}\)

    \(=4-4-4-4 \)

    \(=-8\)

  • Question 11
    4 / -1

    If \(\sec \theta, \tan \theta\) are the roots of the equation \(a x^{2}+b x+c=0\) then \((\sec \theta-\tan \theta) \sec \theta \tan \theta\) is?

    Solution

    Given:

    \(\sec \theta, \tan \theta\) are the roots of the equation \(a x^{2}+b x+c=0\)

    Now,

    Sum of roots \(=\sec \theta+\tan \theta=\frac{-b }{ a}\)

    Product of roots \(=\sec \theta \times \tan \theta=\frac{c }{ a}\)

    As we know that,

    \(\sec ^{2} \theta-\tan ^{2} \theta=1 \)

    \(\Rightarrow(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1 \)

    \(\Rightarrow(\frac{-b }{ a}) \times(\sec \theta-\tan \theta)=1\)

    \(\therefore \sec \theta-\tan \theta=-\frac{a }{ b}\)

    Now,

    \((\sec \theta-\tan \theta) \sec \theta \tan \theta\)

    \(=-\frac{a}{b} \times \frac{c}{a}=-\frac{c}{b}\)

  • Question 12
    4 / -1

    For all \(\mathbf{n} \in \mathbf{N},\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\left(\frac{2 n+1)}{n^{2}}\right)\right)\) is equal to:

    Solution

    Given:

    Let \(P(n)\) be defined as

    \(P(n)=\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\left(\frac{2 n+1)}{n^{2}}\right)\right)=(n+1)^{2}\)

    Put \(\mathrm{n}=1\)

    \(P(1)=\left(1+\frac{3}{1}\right)=(1+1)^{2}\)

    \(4=4 P(1)\) is true

    Let it is true for \(\mathrm{n}=\mathrm{k}\)

    \(P(k)=\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\left(\frac{2 k+1)}{k^{2}}\right)\right)=(k+1)^{2} \ldots .(1)\)

    for \(n=k+1\)

    \(P(k+1)=\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\left(\frac{2 k+1)}{k^{2}}\right)\right)=(k+1)^{2}\right]\left(1+\frac{2 k+1+2}{(k+1)^{2}}\right)\)

    \(=(k\)\(+1)^{2}\left(1+\frac{2 k+3}{(k+1)^{2}}\right) \)

    \(\text { Using Equation (1) } \)

    \(=(k+1)^{2}\left[\frac{(k+1)^{2}+2 k+3}{(k+1)}\right] \)

    \(=\mathrm{k}^{2}+2 \mathrm{k}+1+2 \mathrm{k}+3 \)

    \(=(\mathrm{k}+2)^{2}=[(\mathrm{k}+1)+1]^{2}\)

    Therefore, \(\mathrm{P}(\mathrm{k}+1)\) is true, So From the Principle of Mathematical Induction, the statement is true for all natural numbers \(n\).

    \(=(n+1)^{2}\)

  • Question 13
    4 / -1

    In how many different ways the letters of the word 'MENHIR' be arranged so that the vowel never comes together?

    Solution

    Given:

    The given word = 'MENHIR'

    Assume all the vowels equal to one letter

    If a word has \(n\) letters, then the number of different ways to arrange the letter is

    Case1:- When no repetition of letters takes place \(=n\) !

    Case2:- When \(r_{1}, r_{2}, r_{3}, \ldots . r_{n}\) repeated letters \(=\frac{n ! }{\left(r_{1} ! r_{2} !\ldots r_{n} !\right)}\)

    The given word = 'MENHIR'

    Total number of letters in the given word \(=6\)

    The total number of ways to arrange ' \(M E N H I R^{\prime}=6 !=720\)

    Number of vowel \(=2\)

    Total number of letters in the given word after taking two vowels as one \(=5\)

    The number of ways to arrange the given word \(=5\) !

    The vowel can be arranged in 2 ! Ways

    Total number of ways to arrange the word when the vowel is together \(=5 ! \times 2 !=240\)

    Total number of ways \(=720-240=480\)

    \(\therefore\) The number of ways to arrange the given word when a vowel is never together is \(480\).

  • Question 14
    4 / -1

    Consider the expansion of \((1+x)^{2 n+1}\), the average of the coefficients of the two middle terms in the expansion is:

    Solution

    We have to find average of the coefficients of the two middle terms in the expansion of \((1+x)^{2 n+1}\)

    Since, \(2 n+1\) is odd.

    So \(\left(\frac{2 n+1+1}{2}\right)\) and \(\left(\frac{2 n+1+3}{2}\right)\) are two middle \(\Rightarrow(\mathrm{n}+1)^{\mathrm{th}}\) and \((\mathrm{n}+2)^{\mathrm{th}}\) term are two middle terms.

    Now, coefficients of the \((\mathrm{n}+1)^{\text {th }}\) term and \((\mathrm{n}+2)^{\text {th }}\) term are \({ }^{2 n+1} c_{n}\) and \({ }^{2 n+1} c_{n+1}\)

    Average of the coefficients of the two middle terms \(=\frac{{ }^{2 n+1} c_{n}+{ }^{2 n+1} c_{n+1}}{2}\)

    We know that \({ }^{n} c_{r}+{ }^{n} c_{r+1}={ }^{n+1} c_{r+1}\)

    So, \({ }^{2 n+1} c_{n}+{ }^{2 n+1} c_{n+1}={ }^{2 n+2} c_{n+1}\)

    Average of the coefficients of the two middle terms \(=\frac{{ }^{2 n+1} c_{n}+{ }^{2 n+1} c_{n+1}}{2}=\frac{{ }^{2 n+2} c_{n+1}}{2}\)

    We know that \({ }^{n} c_{r}=\frac{n}{r}{ }^{n-1} c_{r-1}\)

    So, \({ }^{2 n+2} c_{n+1}=\frac{2 n+2}{n+1}{ }^{2 n+1} c_{n}=\frac{2(n+1)}{n+1}{ }^{2 n+1} c_{n}=2 \times{ }^{2 n+1} c_{n}\)

    Average of the coefficients of the two middle terms \(=\frac{{ }^{2 n+2} c_{n+1}}{2}=\frac{2 \times^{2 n+1} c_{n}}{2}={ }^{2 n+1} c_{n}\)

  • Question 15
    4 / -1

    If \(x\) increases at the rate of \(2 \mathrm{~m} / \mathrm{sec}\) at the instant when \(x=3 \mathrm{~m}, y=1 \mathrm{~m}\), at what rate must \(y\) be changing in order that the function \(2 x y-3 x^{2} y\) shall be neither increasing nor decreasing?

    Solution

    Given:

    f(x, y)=2 x y-3 x^{2} y

    By using equation (2),

    \(\Rightarrow \frac{\partial f}{\partial t}=(2 y-6 x y) \frac{\partial x}{\partial t}+\left(2 x-3 x^{2}\right) \frac{\partial y}{\partial t}\)

    By using equation (1),

    \(0=(2-6 \times 3)(2)+(2 \times 3-3 \times 9) \frac{\partial y}{\partial t}\)

    \(\Rightarrow \frac{\partial y}{\partial t}=-\frac{32}{21} \mathrm{~m} / \mathrm{sec}\)

    \(\therefore \frac{\partial y}{\partial t}=\)\(\frac{32 }{ 21} \mathrm{~m} / \mathrm{sec}\); decreasing

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now