Self Studies

Mathematics Test-11

Result Self Studies

Mathematics Test-11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The complete solution of the equation \(\frac{\partial z}{\partial x} e^{y}=\frac{\partial z}{\partial y} e^{x}\) will be:

    Solution

    Given:

    \(\frac{\partial z}{\partial x} e^{y}=\frac{\partial z}{\partial y} e^{x}\)

    In another form, the equation will be:

    \(p e^{y}=q e^{x}\)

    \(\Rightarrow \frac{p}{e^{x}}=\frac{q}{e^{y}}\)

    Let \(p e^{-x}=q e^{-y}=a\)

    \(\Rightarrow p=a e^{x} ; q=a e^{y} ;\)

    The complete solution will be:

    \(z=\int p d x+\int q d y\)

    \(\Rightarrow z=\int a e^{x} d x+\int a e^{y} d y\)

    \(\Rightarrow z=a e^{x}+a e^{y}+b\)

    Where a, b are arbitrary constants.

  • Question 2
    4 / -1

    Find the values of \(k\) so the line \(\frac{2 x-2}{2 k}=\frac{4-y}{3}=\frac{\mathrm{z}+2}{-1}\) and \(\frac{\mathrm{x}-5}{1}=\frac{\mathrm{y}}{\mathrm{k}}=\frac{\mathrm{z}+6}{4}\) are at right angles.

    Solution

    Given lines are \(\frac{2 \mathrm{x}-2}{2 \mathrm{k}}=\frac{4-\mathrm{y}}{3}=\frac{\mathrm{z}+2}{-1}\) and \(\frac{\mathrm{x}-5}{1}=\frac{\mathrm{y}}{\mathrm{k}}=\frac{\mathrm{z}+6}{4}\)

    Write the above equation of a line in the standard form of lines

    \(\Rightarrow \frac{2(\mathrm{x}-1)}{2 \mathrm{k}}=\frac{-(\mathrm{y}-4)}{3}=\frac{\mathrm{z}+2}{-1} \Leftrightarrow \frac{(\mathrm{x}-1)}{\mathrm{k}}=\frac{\mathrm{y}-4}{-3}=\frac{\mathrm{z}+2}{-1}\)

    So, the direction ratio of the first line is \((k,-3,-1)\)

    \(\frac{\mathrm{x}-5}{1}=\frac{\mathrm{y}}{\mathrm{k}}=\frac{\mathrm{z}+6}{4}\)

    So, direction ratio of second line is \((1, k, 4)\)

    Lines are perpendicular,

    \(\therefore(\mathrm{k} \times 1)+(-3 \times \mathrm{k})+(-1 \times 4)=0\)

    \(\Rightarrow \mathrm{k}-3 \mathrm{k}-4=0\)

    \(\Rightarrow-2 \mathrm{k}-4=0\)

    \(\therefore \mathrm{k}=-2\)

  • Question 3
    4 / -1

    If \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}-3\) then find the value of \(\mathrm{f}(\mathrm{A})\).

    Solution

    Given \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\), and \(f(x)=x^{2}-2 x-3\)

    The matrix A is also satisfying the above polynomial.

    \(\Rightarrow f(A)=A^{2}-2 A-3\)

    \(\Rightarrow f(A)=A A-2 A-3I\)

    \(\Rightarrow f(A)=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]-2\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]-3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)

    \(\Rightarrow f(A)=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\)

    \(\Rightarrow f(A)=\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]-\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]\)

    \(\Rightarrow f(A)=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\)

  • Question 4
    4 / -1
    The least positive integer \(n\) for which \(\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{n}=1\) is:
    Solution
    First rationalize the number
    \(\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1+i \sqrt{3}}\right)=\left(\frac{-2+i 2 \sqrt{3}}{4}\right)\)
    \(=\left(\frac{1-i \sqrt{3}}{-2}\right) \ldots \ldots \ldots \ldots . .(1)\)
    \(\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1-i \sqrt{3}}{1-i \sqrt{3}}\right)=\left(\frac{4}{-2-i 2 \sqrt{3}}\right)\)
    \(=\left(\frac{-2}{1+i \sqrt{3}}\right) \ldots \ldots \ldots \ldots . .(2)\)
    Using (1) and (2) we get,
    \(\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{3}=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)\)
    \(=\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right) \times\left(\frac{-2}{1+i \sqrt{3}}\right) \times\left(\frac{1-i \sqrt{3}}{-2}\right)=1\)
  • Question 5
    4 / -1

    What is \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})\) equal to?

    Solution

    We have to find the value of \((\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})\)

    \(\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\vec{a} \times \vec{a}-\vec{a} \times \vec{b}+\vec{b} \times \vec{a}-\vec{b} \times \vec{b}\)

    We know that,

    \(\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}\)

    \(\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=0-\vec{a} \times \vec{b}-\vec{a} \times \vec{b}-0\)

    \(\because(\vec{a} \times \vec{a}=\vec{b} \times \vec{b}=0)\)

    \(\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=-2(\vec{a} \times \vec{b})\)

  • Question 6
    4 / -1

    If the mean of a set of observations \(x_{1}, x_{2}, x_{3}, \ldots, x_{10}\) is 50 , then the mean of \(x_{1}+5, x_{2}+10, x_{3}+15, \ldots, x_{10}+50\) is:

    Solution

    Given:

    Mean of a set of observations \(x_{1}, x_{2}, x_{3}, \ldots, x_{10}\) is 50.

    Here \(n=10\),

    Mean \(=\frac{\sum x_{i}}{n}\)

    \(=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{10}}{10}=50\)

    \(\Rightarrow x_1+x_2+x_3+\ldots+x_{10}=500\) …. (1)

    Now find out the mean of new observations

    \(x_{1}+5, x_{2}+10, x_{3}+15, \ldots, x_{10}+50\)

    Mean \(=\frac{\sum x_{i}}{n}\)

    \(=\frac{\left(x_{1}+5\right)+\left(x_{2}+10\right)+\left(x_{3}+15\right)+\ldots+\left(x_{10}+50\right)}{10}\)

    \(=\frac{\left(x_{1}+x_{2}+x_{3}+\ldots+x_{10}\right)+(5+10+15+\ldots+50)}{10}\)

    From equation (1),

    \(=\frac{500+5(1+2+3+\ldots+10)}{10}\)

    \(=50+\frac{1}{2} \times \frac{10 \times 11}{2}\)

    \(=50+27.5\)

    \(=77.5\)

  • Question 7
    4 / -1

    A straight line through \(\mathrm{P}(1,2)\) is such that its intercept between the axes is bisected at P. Its equation is:

    Solution

    Let \(\mathrm{X}-\) axis intercept of line be \(\mathrm{A}(\mathrm{a}, 0)\) and \(\mathrm{Y}-\) axis intercept of line be \((0, \mathrm{b})\).

    Hence equation of line will be,

    \(\frac{x}{a}+\frac{y}{b}=1\)

    According to question \(\mathrm{P}(1,2)\) is mid point of \(\mathrm{A}(\mathrm{a}, 0)\) and \(\mathrm{B}(0, \mathrm{b})\)

    \(\Rightarrow \frac{a+0}{2}=1\) and \(\frac{0+b}{2}=2\)

    \(\Rightarrow \mathrm{a}=2\) and \(\mathrm{b}=4\)

    Hence equation of line will be:

    \(\frac{x}{2}+\frac{y}{4}=1\)

    Multiplying each term by 4 we get:

    \(2 \mathrm{x}+\mathrm{y}=4\)

  • Question 8
    4 / -1

    Find the sum to \(n\) terms of the \(A.P.\), whose \(n^{\text {th }}\) term is \(5 n+1\)

    Solution

    The sum of \(n\) terms \(=\frac{n}{2}(\) First term \(+n\)th term \()\)

    Put \(n=1\), we get \(a_1=5(1)+1=6\)

    Sum of \(n\) terms \(=\frac{n}{2}(\) First term \(+nth\) term)

    \(\Rightarrow\) Sum of \(n\) terms \(=\frac{n}{2}(6+5 n+1)\)

    \(\Rightarrow\) Sum of \(n\) terms \(=\frac{n}{2}(7+5 n)\)

  • Question 9
    4 / -1

    Evaluate: \(\int \frac{\mathrm{dx}}{\mathrm{x}(\mathrm{x}+4)}\)

    Solution

    \(I=\int \frac{d x}{x(x+4)}\)

    \(=\frac{1}{4} \int \frac{4 \mathrm{dx}}{\mathrm{x}(\mathrm{x}+4)}\)

    \(=\frac{1}{4} \int \frac{(\mathrm{x}+4-\mathrm{x}) \mathrm{dx}}{\mathrm{x}(\mathrm{x}+4)}\)

    \(=\frac{1}{4}\left[\int \frac{x+4}{x(x+4)} d x-\int \frac{x}{x(x+4)} d x\right]\)

    \(=\frac{1}{4}\left[\int \frac{\mathrm{dx}}{\mathrm{x}}-\int \frac{\mathrm{dx}}{(\mathrm{x}+4)}\right]\)

    As we know, \(\int \frac{\mathrm{dx}}{\mathrm{x}}=\log |\mathrm{x}|+\mathrm{c}\) where \(\mathrm{c}\) is a constant

    \(I=\frac{1}{4}[\log x-\log (x+4)]+c\)

    \(=\frac{1}{4} \log \left|\frac{\mathrm{x}}{\mathrm{x}+4}\right|+\mathrm{c}\)\(\left(\because \log m-\log n=\log \frac{m}{n}\right)\)

  • Question 10
    4 / -1

    The equation \(\cos ^{2} \theta=\frac{(x+y)^{2}}{4 x y}\) is only possible when?

    Solution

    Given:

    \(\cos ^{2} \theta=\frac{(x+y)^{2}}{4 x y}\)

    We know that,

    Max value of \(\cos ^{2} \theta=1\)

    Therefore,

    \(1=\frac{(x+y)^{2}}{4 x y}\)

    \(\Rightarrow 4 x y=(x+y)^{2}\)

    \(\Rightarrow 4 x y=x^{2}+y^{2}+2 x y\)

    \(\Rightarrow 0=x^{2}+y^{2}-2 x y\)

    \(\Rightarrow 0=(x-y)^{2}\)

    \(\Rightarrow 0=x-y\)

    \(\Rightarrow x=y\)

  • Question 11
    4 / -1

    For a hyperbola \(\frac{x^{2}}{16}-\frac{y^{2}}{9}=1\) then equation of directrix is:

    Solution

    Given:

    \(\frac{x^{2}}{16}-\frac{y^{2}}{9}=1\)

    Compare with standard equation, we get

    \(a^{2}=16\) and \(b^{2}=9\)

    Eccentricity \(e=\sqrt{1+\frac{b^{2}}{a^{2}}}\)

    \(=\sqrt{1+\frac{9}{16}}=\)

    \(=\sqrt{\frac{16+9}{16}}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

    Now, Equation of directrix

    \(x=\pm \frac{a}{e}\)

    \(=\pm \frac{4}{\left(\frac{5}{4}\right)}=\pm \frac{16}{5}\)

  • Question 12
    4 / -1
    Let \(f: N \rightarrow Y\) be a function defined as \(f(x)=4 x+3,\) where \(Y=\{y \in N: y=4 x+3, \text { for some } x \in N\} .\) Show that \(f\) is invertible and its inverse is
    Solution
    Given,
    \(f: N \rightarrow Y\) defined by \(f(x)=4 x+3\)
    For \(f\) to be invertible, \(f\) should be one-one and onto.
    Let \(x_{1}, x_{2} \in N\) such that \(f\left(x_{1}\right)=f\left(x_{2}\right)\)
    \(4 x_{1}+3=4 x_{2}+3\)
    \(\Rightarrow x_{1}=x_{2}\)
    \(\therefore\) \(f\) is one-one. \(Y=\{y \in N: y=4 x+3 \) for some \(x \in N\}\)
    By the definition, it follows that for every \(y \in Y\), there is some \(x \in X\)
    \(\therefore\) \(f\) is onto.
    \(\therefore\) \(f\) is invertible.
    Let \(y=4 x+3\) \(\Rightarrow x=\frac{y-3}{4}\)
    \(\Rightarrow f^{-1}(y)=\frac{y-3}{4}=g(y)\)
  • Question 13
    4 / -1
    The coefficient of \(x^{5}\) in the expansion of \((1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots+(1+x)^{30}\) is _________.
    Solution

    Let,

    \(\mathrm{S}=(1+\mathrm{x})^{21}+(1+\mathrm{x})^{22}+(1+\mathrm{x})^{23}+\ldots(1+\mathrm{x})^{30} \ldots(\mathrm{i})\)

    \((1+x) \mathrm{S}=(1+\mathrm{x})^{22}+(1+\mathrm{x})^{23} \ldots(1+\mathrm{x})^{30}+(1+\mathrm{x})^{31} \ldots(\mathrm{ii})\)

    Subtracting (i) from (ii), we get

    \(\mathrm{xS}=(1+\mathrm{x})^{31}-(1+\mathrm{x})^{21}\)

    \(\mathrm{S}=\frac{(1+\mathrm{x})^{31}}{\mathrm{x}}-\frac{(1+\mathrm{x})^{21}}{\mathrm{x}}\)

    Coefficient of \(\mathrm{x}^{\mathrm{r}}\)

    \(={ }^{31} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}-1}-{ }^{21} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}-1}\)

    \(=\left({ }^{31} \mathrm{C}_{\mathrm{r}}-{ }^{21} \mathrm{C}_{\mathrm{r}}\right) \mathrm{x}^{\mathrm{r}-1} \ldots(\mathrm{a})\)

    Therefore, the coefficient of \(\mathrm{x}^{5}\) implies

    \(\Rightarrow\mathrm{r}-1=5\)

    \(\Rightarrow\mathrm{r}=6\)

    Substituting in (a), we get coefficient of \(\mathrm{x}^{5}\)

    \(=\left({ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}\right)\)

  • Question 14
    4 / -1

    If \(\omega\) is the cube root of unity, then what is the value of\(\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    Solution

    If the \(1, \omega\) and \(\omega^{2}\) are the cube roots of unity, then\(1+\omega+\omega^{2}=0\)

    If any row and column have all the elements as zero in the square matrix, then the determinant is zero.

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    \(\mathrm{R}_{3}=\mathrm{R}_{3}+\mathrm{R}_{1}+\mathrm{R}_{2}\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 1+\omega+\omega^{2} \\ \omega & \omega^{2} & 1+\omega+\omega^{2} \\ \omega^{2} & 1 & 1+\omega+\omega^{2}\end{array}\right|\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 0 \\ \omega & \omega^{2} & 0 \\ \omega^{2} & 1 & 0\end{array}\right|=0\)

  • Question 15
    4 / -1

    The probability that a contractor gets a plumbing contract is \(\frac{2}{3}\) and the probability that he will not get an electric contract is \(\frac{5}{9}\). If the probability of getting at least one contract is \(\frac{4}{5}\), then the probability that he will get both the contracts is:

    Solution

    Given:

    The probability of getting plumbing contract \(=P(A)=\frac{2}{3}\)

    Probability of getting not electric contract \(P(\bar{B})=\frac{5}{9}\)

    Probability of getting atleast one contract \(P(A \cup B)=\frac{4}{5}\)

    The probability of not getting electric contract \(=1-P(\bar{B})\)

    \(=1-\frac{5}{9}=\frac{4}{9}\)

    Probability of getting both the contracts \(P(A \cap B)=P(A)+P(B)-P(A \cup B)\)

    \(\Rightarrow P(A \cap B)=\frac{2}{3}+\frac{4}{9}-\frac{4}{5}\)

    \(= \frac{(90+60-108)}{135}\)

    \(\therefore\) The probability that he will get both the contracts \(P(A \cap B)\) is \(\frac{14}{ 45}\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now