The given system of linear equations:
\(x+y+z=5 \)
\(x+2 y+2 z=6\)
\(x+3 y+\lambda z=\mu\) have infinite solution.
\(\therefore \Delta=0, \Delta \mathrm{x}=\Delta \mathrm{y}=\Delta \mathrm{z}=0\)
Now, forming determinant from the given equations,
\(\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & \lambda\end{array}\right|=0\)
\(\Rightarrow 1(2 \lambda-6)-1(\lambda-2)+1(3-2)=0\)
\(\Rightarrow 2 \lambda-6-\lambda+2+3-2=0\)
\(\Rightarrow \lambda-8+5=0\)
\(\Rightarrow \lambda-3=0\)
\(\therefore \lambda=3\)
Now, the determinant of \(y\) is:
\(\Delta \mathrm{y}=\left|\begin{array}{lll}1 & 5 & 1 \\ 1 & 6 & 2 \\ 1 & \mu & 3\end{array}\right|=0\)
\(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\)
\(\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\)
\(\Rightarrow\left|\begin{array}{ccc}1 & 5 & 1 \\ 1-1 & 6-5 & 2-1 \\ 1-1 & \mu-5 & 3-1\end{array}\right|=0\)
\(\Rightarrow\left|\begin{array}{ccc}1 & 5 & 1 \\ 0 & 1 & 1 \\ 0 & \mu-5 & 2\end{array}\right|=0\)
\(\Rightarrow 1(2-(\mu-5))-5(0-0)+1(0-0)=0 \)
\(\Rightarrow 1(2-(\mu-5))=0 \)
\(\Rightarrow 2-\mu+5=0 \)
\(\Rightarrow 7-\mu=0 \)
\(\therefore \mu=7\)
Now
\(\therefore \lambda+\mu=3+7=10\)