Self Studies

Mathematics Test-12

Result Self Studies

Mathematics Test-12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    For the equations \(x+2 y+3 z=1,2 x+y+3 z=2\) and \(5 x+5 y+9 z=4\).

    Solution
    The given system of equations can be written in matrix form as follows
    \(\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]\)
    Here, \(A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\) and \(B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]\)
    Now, \(|A|=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right|\)
    \(=1(9-15)-2(18-15)+3(10-5)\)
    \(=-6-6+15\)
    \(=3 \neq 0\)
    \(\Rightarrow|A| \neq 0\)
    So, the given system of equations has a unique solution.
  • Question 2
    4 / -1

    If the roots of the quadratic equation \(x^{2}-4 x-\log _{3} a=0\) are real, then the least value of \(a\) isequal to

    Solution
    Given,
    \(x^{2}-4 x-\log _{3} a=0\)
    Since the roots of the given equation are real
    \(D \geq 0\)
    \(\Rightarrow16+4 \log _{3} a \geq 0\)
    \(\Rightarrow \log _{3} a \geq-4\)
    \(\Rightarrow a \geq 3^{-4}\)
    \(\Rightarrow a \geq \frac{1}{81}\)
    So, the least value of \(a\) is \(\frac{1}{81}\).
  • Question 3
    4 / -1

    The sum to \(n\) terms of the series \(\frac{1}{(\sqrt{1}+\sqrt{3})}+\frac{1}{(\sqrt{3}+\sqrt{5})}+\frac{1}{(\sqrt{5}+\sqrt{7})}+\ldots\) is:

    Solution

    The given series is,

    \(\frac{1}{(\sqrt{1}+\sqrt{3})}+\frac{1}{(\sqrt{3}+\sqrt{5})}+\frac{1}{(\sqrt{5}+\sqrt{7})}+\ldots\)

    Let the general term of the given series is \(T_r\).

    \(\therefore T_{r}=\frac{1}{\sqrt{2 r-1}+\sqrt{2 r+1}}\)

    We have to find the sum of \(n\) terms of given series. Therefore,

    \(S_{n}=\sum T_{r}\)

    \(\Rightarrow S_{n}=\sum_{r=1}^{n} \frac{1}{\sqrt{2 r-1}+\sqrt{2 A+1}}\)

    By rationalizing the denominator, we get,

    \(S_{n}=\sum_{r=1}^{n} \frac{1}{\sqrt{2 r+1}+\sqrt{2 r-1}} \times\left[\frac{\sqrt{2 r+1}-\sqrt{2r-1}}{\sqrt{2 r+1}-\sqrt{2 r-1}}\right]\)

    \(\Rightarrow S_{n}=\sum_{r=1}^{n} \frac{\sqrt{2 r+1}-\sqrt{2r-1}}{(\sqrt{2 r+1})^2-(\sqrt{2 r-1})^2}\quad[\because (a+b)(a-b)=a^2-b^2] \)

    \(\Rightarrow S_{n}=\sum_{r=1}^{n} \frac{\sqrt{2 r+1}-\sqrt{2r-1}}{2 r+1-2 r+1} \)

    \(\Rightarrow S_{n}=\sum_{r=1}^{n} \frac{\sqrt{2 r+1}-\sqrt{2r-1}}{2} \)

    \(\Rightarrow S_{n}=\frac{1}{2}\left[\sum_{r=1}^{n} \sqrt{2r+1}-\sqrt{2 r-1}\right]\)

    \(\Rightarrow S_n=\frac{1}{2}\left[(\sqrt{3}-\sqrt{1})+(\sqrt{5}-\sqrt{3})+(\sqrt{7}-\sqrt{5})+\ldots+\sqrt{2 n+1}-\sqrt{2 n-1}\right]\)

    \(\Rightarrow S_n=\frac{1}{2}\left[\sqrt{2 n+1}-1\right]\)

  • Question 4
    4 / -1

    If \(\mathrm{X}\) and \(\mathrm{Y}\) are two sets such that \(\mathrm{X}\) has \(40\) elements, \(\mathrm{X} \cup \mathrm{Y}\) has \(60\) elements and \(\mathrm{X} \cap \mathrm{Y}\) has \(10\) elements, how many elements does \(\mathrm{Y}\) have?

    Solution
    Given,
    \(\mathrm{n}(\mathrm{X})=40\)
    \(\mathrm{n}(\mathrm{X} \cup \mathrm{Y})=60\)
    \(n(X \cap Y)=10\)
    Now, \(\mathrm{n}(\mathrm{X} \cup \mathrm{Y})=\mathrm{n}(\mathrm{X})+\mathrm{n}(\mathrm{Y})-\mathrm{n}(\mathrm{X} \cap \mathrm{Y})\)
    \(\Rightarrow 60=40+\mathrm{n}(\mathrm{Y})-10\)
    \(\Rightarrow \mathrm{n}(\mathrm{Y})=60-40+10\)
    \(\Rightarrow \mathrm{n}(\mathrm{Y})=20+10=30\)
  • Question 5
    4 / -1

    Range of the function \(f(x)=\frac{x^{2}+x+2}{x^{2}+x+1} ; x \in R\) is

    Solution

    Let \(y=\frac{x^{2}+x+2}{x^{2}+x+1}\)

    \(\Rightarrow x^{2}(y-1)+x(y-1)+(y-2)=0, \forall x \in R\)

    Now, \(D \geq 0 \Rightarrow(y-1)^{2}-4(y-1)(y-2) \geq 0\)

    ⇒ \((y-1)\{(y-1)-4(y-2)\} \geq 0\)

    ⇒ \((y-1)(-3 y+7) \geq 0\)

    \(\Rightarrow \leq \mathrm{y} \leq \frac{7}{3}\)

    \(\therefore\) Range \(=\left[1, \frac{7}{3}\right]\)

  • Question 6
    4 / -1
    If \(G(x)=\sqrt{25-x^{2}}\), then what is \(\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}=?\)
    Solution

    Given,

    \(G(x)=\sqrt{25-x^{2}}\)

    As we know that, any a function \(f : I \rightarrow R\) is said to be differentiable at \(c\), if and only if \(\lim _{h \rightarrow 0}\left[\frac{f(c+h)-f(c)}{h}\right]=f^{\prime}(c)\).

    \(\Rightarrow \lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}=G^{\prime}(1)\)

    \(\because G(x)=\sqrt{25-x^{2}}\)

    \(\Rightarrow G^{\prime}(x)=\frac{1}{2} \times \frac{1}{\sqrt{25-x^{2}}} \times(-2 x)=\frac{-x}{\sqrt{25-x^{2}}}\)

    \(\Rightarrow G^{\prime}(1)=\frac{-x}{\sqrt{25-x^{2}}}=-\frac{1}{2 \sqrt{6}}\)

  • Question 7
    4 / -1

    The area bounded by the coordinate axes and the curve \(\sqrt{ x }+\sqrt{ y }=1\), is:

    Solution

    Given,

    Equation of curve: \(\sqrt{ x }+\sqrt{ y }=1\)

    \(\therefore \sqrt{ y }=1-\sqrt{ x }\)

    \(\Rightarrow y =(1-\sqrt{ x })^{2}\)

    \(=1-2 \sqrt{ x }+ x\)

    Now let's find the limits,

    \(\text { If } x=0\)

    \(\sqrt{x}+\sqrt{y}=1\)

    \(\Rightarrow \sqrt{y}=1\)

    \(\Rightarrow y=1\)

    And if, \(y=0, x=1\)

    So the curve cut \(Y\)-axis at \((0,1)\) and \(X\)-axis at \((1,0)\)

    \(\therefore x=0, x=1\)

    Now,

    \(\text { Area }= A =\int_{0}^{1} ydx\)

    \(=\int_{0}^{1}(1-2 \sqrt{ x }+ x ) dx\)

    \(=\left[ x -\frac{2( x )^{\frac{3}{2}}}{\frac{3}{2}}+\frac{ x ^{2}}{2}\right]_{0}^{1}\)

    \(=\left[\left(1-\frac{4}{3}+\frac{1}{2}\right)-0\right]\)

    \(=\left[-\frac{1}{3}+\frac{1}{2}\right]\)

    \(=\frac{1}{6} \text { square unit }\)

  • Question 8
    4 / -1

    The probability that \(A\) speaks truth is \(\frac{4}{5}\), while this probability for \(\mathrm{B}\) is \(\frac{3}{4}\). The probability that they contradict each other when asked to speak on a fact is

    Solution
    Given,
    The probability of speaking truth of \(\mathrm{A}, \mathrm{P}(\mathrm{A})\) \(=\frac{4}{5}\)
    The probability of not speaking truth of \(\mathrm{A}, \mathrm{P}(\mathrm{A})\) \(1-\frac{4}{5}=\frac{1}{5}\)
    The probability of speaking truth of B, \(P(B)\) \(=\frac{3}{4}\)
    The probability of not speaking truth of \(\mathrm{B}, \mathrm{P}(\mathrm{B})\) \(=\frac{1}{4}\)
    The probability of that they contradict each other
    \(=P(A) \cdot P(\bar{B})+P(\bar{A}) \cdot P(B)\)
    \(=\frac{4}{5} \times \frac{1}{4}+\frac{1}{5} \times \frac{3}{4}\)
    \(=\frac{1}{5}+\frac{3}{20}\)
    \(=\frac{7}{20}\)
  • Question 9
    4 / -1

    The value of \(\sec \left(\tan ^{-1} \frac{ y }{2}\right)\) is:

    Solution

    Let, \(\tan ^{-1} \frac{ y }{2}=\theta\), where \(\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\).

    \(\Rightarrow \tan \theta=\frac{y}{2}\)

    \(\Rightarrow \tan ^{2} \theta=\frac{y^{2}}{4}\)

    \(\Rightarrow 1+\tan ^{2} \theta=1+\frac{y^{2}}{4}=\frac{y^{2}+4}{4}\)

    \(\Rightarrow \sec ^{2} \theta=\frac{y^{2}+4}{4}\)

    \(\Rightarrow \sec \theta=\frac{\sqrt{y^{2}+4}}{2}\)

    \(\Rightarrow \sec \left(\tan ^{-1} \frac{ y }{2}\right)=\frac{\sqrt{y^{2}+4}}{2}\)

  • Question 10
    4 / -1

    If \(\sin ^{2} x+\sin x=1\), then what is the value of \(\cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x\) ?

    Solution

    Given, \(\sin ^{2} x+\sin x=1\)

    \(\Rightarrow \sin x=1-\sin ^{2} x\)

    \(\Rightarrow \sin x=\cos ^{2} x \quad \cdots \quad\) As we know, \((a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\)

    \(\Rightarrow \cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x\)

    \(=\left(\cos ^{4} x+\cos ^{2} x\right)^{3}[\) Substituting from eq. (1)]

    \(=\left(\sin ^{2} x+\cos ^{2} x\right)^{3} \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]\)

    \(=1^{3}\)

    \(=1\)

  • Question 11
    4 / -1

    What is the equation of the ellipse having foci \((\pm 2,0)\) and the eccentricity \(\frac{1}{2}\)?

    Solution

    Here, foci \(=(\pm 2,0)=(\pm ae , 0)\) and the eccentricity, \(e =\frac{1}{2}\)

    \(a e=2\)

    \(\Rightarrow a \times \frac{1}{2}=2\)

    \(\Rightarrow a=4\)

    \(\Rightarrow a^{2}=16\)

    \(\text { Now, } e=\sqrt{1-\frac{b^{2}}{a^{2}}}\)

    \(\Rightarrow b^{2}=a^{2}\left(1-e^{2}\right)\)

    \(=16(1-\frac{1}{4})\)

    \(=16 \times(\frac{3}{4})\)

    \(=12\)

    \(\therefore\) Equation of ellipse \(=\frac{x^{2}}{16}+\frac{y^{2}}{12}=1\)

  • Question 12
    4 / -1

    A vector is perpendicular to both the vectors \(\hat{ i }+\hat{ j }\) and \(\hat{ j }+\hat{ k }\) is:

    Solution

    Let vector \(\vec{c}\) is perpendicular to both the vectors \(\hat{\imath}+\hat{\jmath}\) and \(\hat{\jmath}+\hat{k}\)

    Let \(\vec{a}=\hat{\imath}+\hat{\jmath}\) and \(\vec{b}=\hat{\jmath}+\hat{k}\)

    Therefore, \(\vec{c}=\vec{a} \times \vec{b}\)

    \(=(\hat{\imath}+\hat{\jmath}) \times(\hat{\jmath}+\hat{k})\)

    \(=\hat{\imath} \times \hat{\jmath}+\hat{\imath} \times \hat{k}+\hat{\jmath} \times\) \(\hat{\jmath}+\hat{\jmath} \times \hat{k}\)

    \(=\hat{k}-\hat{\jmath}+0+\hat{\imath}\)

    \(=\hat{\imath}-\hat{\jmath}+\hat{k}\)

  • Question 13
    4 / -1

    Find the equation of line passing through \((h, 0)\) and \((0, k)\) and divided by the point \((1,2)\) in the ratio \(2: 3\).

    Solution

    Given:

    Point \(C(1,2)\) divides the line passing through \(A(h, 0)\) and \(B(0, k)\) in the ratio \(2: 3\)

    Here, \(m: n=2: 3,(x, y)=(1,2),\left(x_{1}, y_{1}\right)=(0, k),\left(x_{2}, y_{2}\right)=(h, 0)\)

    Using sectional formula:

    \(\therefore x=\frac{m x_{2}+nx_{1 }}{m+n}\)

    \(\Rightarrow 1=\frac{3(\mathrm{~h})+2(0)}{2+3}\)

    \(\Rightarrow 1=\frac{3 \mathrm{~h}}{5}\)

    \(\Rightarrow 3 \mathrm{~h}=5\)

    \(\Rightarrow \mathrm{h}=\frac{5}{3}\)

    \(\mathrm{y}=\frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\)

    \(\Rightarrow 2=\frac{2(k)+3(0)}{2+3}\)

    \(\Rightarrow 2 \mathrm{k}=10\)

    \(\Rightarrow \mathrm{k}=5\)

    \(\therefore x=\frac{m x_{2}+nx_{1 }}{m+n}\)

    Therefore, \(x\) and \(y\) intercept are \(\frac{5}{3}\) and \(5\).

    Hence, required equation

    \((\frac{x}{\frac{5}{3}})+(\frac{y}{ 5})=1 \)

    \(\Rightarrow 3 x+y=5\)

    \(\therefore\) Required equation is \(3 x+y=5\)

  • Question 14
    4 / -1

    If the system of linear equations

    \(x+y+z=5 \)

    \(x+2 y+2 z=6 \)

    \(x+3 y+\lambda z=\mu\)

    \((\lambda, \mu \in R)\), has infinitely many solutions, then the value of \(\lambda+\mu\) is:

    Solution

    The given system of linear equations:

    \(x+y+z=5 \)

    \(x+2 y+2 z=6\)

    \(x+3 y+\lambda z=\mu\) have infinite solution.

    \(\therefore \Delta=0, \Delta \mathrm{x}=\Delta \mathrm{y}=\Delta \mathrm{z}=0\)

    Now, forming determinant from the given equations,

    \(\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & \lambda\end{array}\right|=0\)

    \(\Rightarrow 1(2 \lambda-6)-1(\lambda-2)+1(3-2)=0\)

    \(\Rightarrow 2 \lambda-6-\lambda+2+3-2=0\)

    \(\Rightarrow \lambda-8+5=0\)

    \(\Rightarrow \lambda-3=0\)

    \(\therefore \lambda=3\)

    Now, the determinant of \(y\) is:

    \(\Delta \mathrm{y}=\left|\begin{array}{lll}1 & 5 & 1 \\ 1 & 6 & 2 \\ 1 & \mu & 3\end{array}\right|=0\)

    \(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\)

    \(\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\)

    \(\Rightarrow\left|\begin{array}{ccc}1 & 5 & 1 \\ 1-1 & 6-5 & 2-1 \\ 1-1 & \mu-5 & 3-1\end{array}\right|=0\)

    \(\Rightarrow\left|\begin{array}{ccc}1 & 5 & 1 \\ 0 & 1 & 1 \\ 0 & \mu-5 & 2\end{array}\right|=0\)

    \(\Rightarrow 1(2-(\mu-5))-5(0-0)+1(0-0)=0 \)

    \(\Rightarrow 1(2-(\mu-5))=0 \)

    \(\Rightarrow 2-\mu+5=0 \)

    \(\Rightarrow 7-\mu=0 \)

    \(\therefore \mu=7\)

    Now

    \(\therefore \lambda+\mu=3+7=10\)

  • Question 15
    4 / -1

    If \(f(x)=\log x+3 x-10\) and \(g(x)=\tan x\) then find \(f^{\prime}(x)\)

    Solution

    \(f(x)=\log x+3 x-10\) and \(g(x)=\tan x\)

    \(fog(x)=f\{g(x)\}=\log (\tan x)+3 \tan x-10\)

    \(\Rightarrow fog^{\prime}(x)=\frac{d[\log (\tan x)]}{d x}+3 \frac{d(\tan x)}{d x}-\frac{d(10)}{d x}\)

    \(\Rightarrow fog^{\prime}(x)=\frac{1}{\tan x} \frac{d(\tan x)}{d x}+3 \sec ^{2} x\)

    \(\Rightarrow fog^{\prime}(x)=\frac{1}{\tan x} \times \sec ^{2} x+3 \sec ^{2} x\)

    \(\Rightarrow fog^{\prime}(x)=\frac{\cos x}{\sin x} \times \frac{1}{\cos ^{2}}+3 \sec ^{2} x\)

    \(\Rightarrow fog^{\prime}(x)=\operatorname{cosec} x . \sec x+3 \sec ^{2}\)

    \(\Rightarrow fog^{\prime}(x)=\sec x(\operatorname{cosec} x+3 \sec x)\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now