Self Studies

Mathematics Test-13

Result Self Studies

Mathematics Test-13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Find the value of\(\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)\) is equal to:

    Solution

    Let \(\tan ^{-1} \sqrt{3}=x .\)

    Then,

    tan \(x=\sqrt{3}=\tan \frac{\pi}{3}\).

    \(\therefore \tan ^{-1} \sqrt{3}=\frac{\pi}{3}\)

    Let \(\sec ^{-1}(-2)=y .\)

    Then,

    \(\sec y=-2=-\sec \left(\frac{\pi}{3}\right)=\sec \left(\pi-\frac{\pi}{3}\right)=\sec \frac{2 \pi}{3}\)

    \(\therefore \sec ^{-1}(-2)=\frac{2 \pi}{3}\)

    Therefore, \(\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)=\frac{\pi}{3}-\frac{2 \pi}{3}=-\frac{\pi}{3}\)

  • Question 2
    4 / -1
    The \(7^{\text {th }}\) term of an A.P. is \(\frac{1}{5}\) and \(5^{\text {th }}\) term is \(\frac{1}{ 7} \). Find sum of first \(13\) terms.
    Solution

    According to the question,

    \(a+6 d=\frac{1}{5}\)......\((1)\)

    \(a+4 d=\frac{1}{7}\).......\((2)\)

    Subtracting the two equations we get,

    \(2 d=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\)

    \(\Rightarrow d=\frac{1}{35}\)

    Substituted inequation\((1)\) to get as:

    \(a=\frac{1}{5}-6 d\)

    \(\Rightarrow a=\frac{1}{5}-\frac{6}{35}\)

    \(\Rightarrow a=\frac{1}{35}\)

    Sum of first \(n\) terms = \(\frac{n}{2}[2d+(n-1)d]\)

    Sum of first \(13\) terms = \(\frac{13}{2}\left[2×\ \frac{1}{35}+(12)× \frac{1}{35}\right]\)

    \(=3\left[\frac{1}{35}+\frac{6}{35}\right]\)

    \(=13× \frac{7}{35}\)

    =\(\frac{13}{5}=2.6\)

  • Question 3
    4 / -1

    The system of equations

    \(2 x+y-3 z=5\)

    \(3 x-2 y+2 z=5 \text { and }\)

    \(5 x-3 y-z=16\)

    Solution

    Given,

    The system of equations

    \(2 x+y-3 z=5\)

    \(3 x-2 y+2 z=5 \text { and }\)

    \(5 x-3 y-z=16\)

    So, \(A=\left[\begin{array}{ccc}2 & 1 & -3 \\ 3 & -2 & 2 \\ 5 & -3 & -1\end{array}\right]\)

    \(\operatorname{det}(A)=|A|=2 \times\{(-2 \times-1)-(-3 \times 2)\}-1 \times\{(3 \times-1)-(2 \times 5)\}+(-3) \times\{(3 \times-3)-(5 \times-2)\}\)

    \(\Rightarrow|A|=2 \times(2+6)-1 \times(-3-10)-3 \times(-9+10)\)

    \(\Rightarrow|A|=16+13-3=26\)

    \(\therefore|A| \neq 0\)

    So, system is consistent having unique solution.

  • Question 4
    4 / -1
    If the quadratic equations \(3 x^{2}+a x+1=0\) and \(2 x^{2}+b x+1=0\) have a common root, then the value of the expression \(5 a b-2 a^{2}-3 b^{2}\) is:
    Solution

    Given,

    Quadratic equations \(3 x^{2}+ax+1=0\) and \(2 x^{2}+bx+1=0\) have a common root.

    Let \(\alpha\) be the common root.

    \(3 \alpha^{2}+\mathrm{a} \alpha+1=0 \ldots(1)\)

    \(2 \alpha^{2}+\mathrm{b} \alpha+1=0 \ldots(2)\)

    Multiplying \((1)\) by \(2\) and \((2)\) by \(3 .\) Further solving those two equations for \(\alpha\) gives.

    \(\alpha=\mathrm{b}-\mathrm{a} \ldots(3)\)

    Substituting \((3)\) in \((1)\), we get

    \(\Rightarrow 2(\mathrm{~b}-\mathrm{a})^{2}+\mathrm{b}(\mathrm{b}-\mathrm{a})+1=0\)

    \(\Rightarrow 3 b^{2}+2 \mathrm{a}^{2}-5 \mathrm{ab}+1=0\)

    \(\therefore 5 a b-3 b^{2}-2 a^{2}=1\)

  • Question 5
    4 / -1

    A-line cuts off equal intercepts on the co-ordinate axes. The angle made by this line with the positive direction of the \(X\)-axis is:

    Solution

    The equation of the line in intercept form is given by:

    \(\frac{x}{a}+\frac{y}{b}=1\)

    It is given that both the intercepts are equal so we have \(a = b\).

    Therefore, the equation of the line is given as follows:

    \(\frac{x}{a}+\frac{y}{a}=1\)

    \(\Rightarrow\frac{x+y}{a}=1\)

    \(\Rightarrow x+y=a\)

    \(\Rightarrow y=-x+a\)

    Therefore, comparing with the slope-intercept form \(y=mx+c\)we observe that the slope of the line is -1.

    We know that slope is given by \(m=tan \theta\)

    Where, \(\theta\)is the angle made with the positive direction of the \(X\)-axis.

    Therefore, in the given case we get,

    \(\tan \theta=-1\)

    \(\Rightarrow \theta=135^{\circ}\)

    Hence the correct option is (D).

  • Question 6
    4 / -1
    The interval in which \(x(>0)\) must lie so that the greatest term in the expansion of \((1+x)^{2 n}\) has the greatest coefficient is:
    Solution

    Let \((r+1)^{\text {th }}\) term be the greatest term in the expansion of \((1+x)^{2 n} \cdot\)

    Then,

    \(T_{r+1}={ }^{2 n} C_{r} x^{2 n-r}\)

    The coefficient of \(T_{r+1}\) is \({ }^{2 n} C_{r}\).

    Clearly, \({ }^{2 n} C_{r}\) will be greatest,

    if \(r=\frac{2 n}{2}=n\)

    Thus, \(T_{n+1}={ }^{2 n} C_{n} x^{n}\) has the greatest coefficient.

    Now, \(T_{n+1}\) will be the greatest term.

    \(\Rightarrow T_{n+1}>T_{n} \quad\)

    \(\Rightarrow \frac{T_{n+1}}{T_{n}}>1\) and \(\frac{T_{n+2}}{T_{n+1}}<1\)

    \(\Rightarrow \frac{{ }^{2 n} C_{n} x^{n}}{2 n_{n-1} x^{n-1}}>1\) and \(\frac{2 \mathrm{n} C_{n+1} x^{n+1}}{2 n C_{n} x^{n}}<1\)

    \(\Rightarrow \left(\frac{n+1}{n}\right) x>1 \) and \(\left(\frac{n}{n+1}\right) x<1\)

    \(\Rightarrow x>\frac{n}{n+1} \) and \(x<\frac{n+1}{n}\)

    \(\Rightarrow \frac{n}{n+1}\)

  • Question 7
    4 / -1
    Evaluate \(\int \log \left(x+\frac{1}{x}\right) d x\)
    Solution

    Let \(I=\int \log \left(x+\frac{1}{x}\right) d x\)

    \(\Rightarrow I=\int \log \left(\frac{x^{2}+1}{x}\right) d x\)

    \(\Rightarrow I=\int \log \left(x^{2}+1\right) d x-\int \log x d x\left(\because \log \frac{a}{b}=\log a-\log b\right)\)

    \(\Rightarrow I=\log \left(x^{2}+1\right) \cdot x-\int \frac{2 x}{x^{2}+1} \cdot x d x-(x \log x-x)+C\) (Integrating by parts.)

    \(\Rightarrow I=x \log \left(x^{2}+1\right)-2 \int \frac{x^{2}}{x^{2}+1} d x-x \log x+x+C\)

    \(\Rightarrow I=x \log \left(x^{2}+1\right)-2 \int\left(1-\frac{1}{x^{2}+1}\right) d x-x \log x+x+C\)

    \(\Rightarrow I=x \log \left(x^{2}+1\right)-2 x+2 \tan ^{-1} x-x \log x+x+C\)

    \(\Rightarrow I=x \log \left(\frac{x^{2}+1}{x}\right)-x+2 \tan ^{-1} x+C\)

    \(\Rightarrow I=x \log \left(x+\frac{1}{x}\right)-x+2 \tan ^{-1} x+C\)

  • Question 8
    4 / -1
    Find the equation of the plane passing through the point \((0,7,-7)\) and containing the line \(\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}\) is:
    Solution

    Any plane passing through \((0,7,-7)\) is \(a(x-0)+b(y-7)+c(z+7)=\) \(0 \ldots\) (i)

    If (i) contains the given line then it must pass through the point \((-1,3,-2)\) and must be parallel to the given line.

    If (i) passes through \((-1,3,-2)\) then,

    \(a(-1-0)+b(3-7)+c(-2+7)=0\)

    ⇒ \(a+4 b-5 c=0 \ldots\) (ii)

    If (i) is parallel to the given line then,

    \((-3) a+2 b+1 . c=0\)

    ⇒ \(-3 a+2 b+c=0 \ldots\) (iii)

    By cross multiplication of (ii) and (iii), we get

    \(\frac{a}{(4+10)}=\frac{b}{(15-1)}=\frac{c}{(2+12)}\)

    ⇒ \(\frac{\mathrm{a}}{14}=\frac{\mathrm{b}}{14}=\frac{\mathrm{c}}{14}\)

    ⇒ \(\frac{\mathrm{a}}{1}=\frac{\mathrm{b}}{1}=\frac{\mathrm{c}}{1}=\mathrm{k}\)

    ⇒ \(a=k, b=k, c=k\)

    Putting \(a=k, b=k\) and \(c=k\) in (i), we get

    The required equation of the plane as \(\mathrm{k}(x-1)+\mathrm{k}(y-7)+\mathrm{k}(z-7)=0\)

    ⇒ \(x+(y-7)+(z+7)=0\)

    ⇒ \(x+y+z=0\)

  • Question 9
    4 / -1
    In the next World cup of cricket, there will be \(12\) teams, divided equally into two groups. Teams of each group will play a match against each other. From each group, \(3\) top teams will qualify for the next round. In this round, each team will play against each other once. Each of the four top teams of this round will play a match against the other three. Two top teams of this round will go to the final round, where they will play the best of three matches. The Minimum number of matches in the next World cup will be:
    Solution

    Total number of teams that play the world cup = \(12\) teams

    One important formula used in solving is \({ }^{n} C_{r}=\frac{n !}{r !(n-r) !}\)

    All \(12\) teams are divided into two groups. In one group we have \(6\) teams and \(2\) teams will play one match. So, for two groups having \(6\) teams. Putting \(n = 6\) and \(r = 2\), we get:

    Matches in the first round:

    \(={ }^{6} C_{2}+{ }^{6} C_{2}\)

    \(=\frac{6 !}{4 ! 2 !}+\frac{6 !}{4 ! 2 !}\)

    \(=\frac{6 \times 5 \times 4 !}{4 ! 2 !}+\frac{6 \times 5 \times 4 !}{4 ! 2 !}\)

    \(=15+15\)

    \(=30\)

    From each group three top teams will qualify for the next round and each team will play against another one. So, we have only \(6\) teams left after the first round and \(2\) teams will play a match. By using combination formula and putting \(n = 6\) and \(r = 2\), we get:

    Match in the second round:

    \(={ }^{6} C_{2}\)

    \(=\frac{6 !}{4 ! 2 !}\)

    \(=\frac{6 \times 5 \times 4 !}{4 ! 2 !}\)

    \(=15\)

    We get top \(4\) from this round where each team will play against the other three. Now, putting \(n = 4\) and \(r = 2\) in combination formula, we get:

    Matches in the semi finals:

    \(={ }^{4} C_{2}\)

    \(=\frac{4 !}{2 ! 2 !}\)

    \(=\frac{4 \times 3 \times 2 !}{2 ! 2 !}\)

    \(=6\)

    Final is best of three so if one team wins the first match and second match then there will not be a third match. Hence, the minimum number of matches are:

    The total number of matches = Matches in the first round + Matches in the second round + Matches in the semi finals round + \(2\) matches in finals

    Total number of matches \(=30+15+6+2=53\)

  • Question 10
    4 / -1

    The slope of the tangent at \((x, y)\) to a curve passing through \(\left[1,\left(\frac{\pi}{4}\right)\right]\) is given by \(\left(\frac{y}{x}\right)-\cos ^{2}\left(\frac{y}{x}\right)\), then the equation of the curve is:

    Solution

    Given:

    \(\left(\frac{d y}{d x}\right)=\left(\frac{y}{x}\right)-\cos ^{2}\left(\frac{y}{x}\right)\)

    \(\operatorname{Let}\left(\frac{y}{x}\right)=t\)

    \(\Rightarrow\left(\frac{d y}{d x}\right)=x\left(\frac{d t}{d x}\right)+t\)

    \(\Rightarrow x\left(\frac{d t}{d x}\right)+t=t-\cos ^{2} t\)

    \(\Rightarrow x\left(\frac{d t}{d x}\right)+\cos ^{2} t=0\)

    \(\Rightarrow\left[\frac{(x \cdot d t)}{\left(d x \cdot \cos ^{2} t\right)}\right]+1=0\)

    \(\Rightarrow\left[\frac{(d t)}{\left(\cos ^{2} t\right)}\right]+\left(\frac{d x}{x}\right)=0\)

    On integrating,

    \(\Rightarrow \int \sec ^{2} t d t+\int\left(\frac{d x}{x}\right)=0\)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=c\)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=c\)

    when \(x=1, y=\left(\frac{\pi}{4}\right)\) hence

    \(\Rightarrow \tan \left(\frac{\pi}{4}\right)=c \text { i.e. } c=1\)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=\log e\)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log \left(\frac{e}{x}\right)\)

    \(\therefore\) The equation of the curve is \(y=x \tan ^{-1}\left[\log \left(\frac{e}{x}\right)\right]\)

  • Question 11
    4 / -1

    Find the eccentricity of the ellipse \(2 x^{2}+3 y^{2}=6\).

    Solution

    The given equation of the ellipse is \(2 x^{2}+3 y^{2}=6\).

    Divide throughout by 6 to get the equation in the standard form.

    \(\frac{x^{2}}{3}+\frac{y^{2}}{2}=1\)

    Therefore, \(a^{2}=3\) and \(b^{2}=2\)

    Now, for any ellipse using the relation we can write:

    \(b^{2}=a^{2}\left(1-{e}^{2}\right)\)

    \(\Rightarrow2=3\left(1-{e}^{2}\right)\)

    \(\Rightarrow e^{2}=\frac{1}{3}\)

    \(\Rightarrow{e}=\frac{1}{\sqrt{3}}\)

    Therefore, the eccentricity of the given ellipse is \(\frac{1}{\sqrt{3}}\).

    Hence the correct option is (A).

  • Question 12
    4 / -1

    Evaluate:

    \(\frac{\cos x-\sin x+1}{\cos x+\sin x-1}=?\)

    Solution

    Given,

    \(\frac{\cos x-\sin x+1}{\cos x+\sin x-1}\)

    \(=\frac{\cos x-(\sin x-1)}{\cos x+(\sin x-1)} \times \frac{\cos x-(\sin x-1)}{\cos x-(\sin x-1)}\)

    \(=\frac{[\cos x-(\sin x-1)]^{2}}{\cos ^{2} x-(\sin x-1)^{2}}\)

    \(=\frac{\cos ^{2} x+(\sin x-1)^{2}-2 \cos x(\sin x-1)}{\cos ^{2} x-\left(\sin ^{2} x-2 \sin x+1\right)}\)

    \(=\frac{\cos ^{2} x+\sin ^{2} x-2 \sin x+1-2 \cos x(\sin x-1)}{1-\sin ^{2} x-(\sin 2 x-2 \sin x+1)}\)

    \(=\frac{2-2 \sin x-2 \cos x(\sin x-1)}{1-\sin 2 x-\sin ^{2} x+2 \sin x-1}\)

    \(=\frac{2(1-\sin x)+2 \cos x(1-\sin x)}{2 \sin x-2 \sin 2 x}\)

    \(=\frac{(1-\sin x)(1+\cos x)}{\sin x\left(1-\sin ^{2} x\right)}\)

    \(=\frac{1+\cos x}{\sin x}\)\(=\operatorname{cosec} x+\cot x\)

  • Question 13
    4 / -1
    The equation of the tangent to the curve \(y=x^{3}\) at \((1,1)\) is:
    Solution

    Given,

    \(y=f(x)=x^{3}\)

    \(\Rightarrow y^{\prime}=f^{\prime}(x)=3 x^{2}\)

    \({~m}={f}^{\prime}(1)=3 \times 1^{2}=3\),

    Equation of the tangent at \((1,1)\) will be:

    \((y-b)=m(x-a)\)

    \(\Rightarrow(y-1)=3(x-1)\)

    \(\Rightarrow y-1=3 x-3\)

    \(\Rightarrow 3 x-y-2=0\)


  • Question 14
    4 / -1

    Solve the following Linear Programming Problems graphically:

    Minimise \(\mathrm{Z}=-3 \mathrm{x}+4 \mathrm{y}\), subject to \(x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0\)

    Solution

    Objective function \(: \mathrm{Z}=-3 \mathrm{x}+4 \mathrm{y}\)

    We have to minimize \(\mathrm{Z}\) on constraints

    \(\mathrm{x}+2 \mathrm{y} \leq 8 \)

    \(3 \mathrm{x}+2 \mathrm{y} \leq 12 \)

    \(\mathrm{x} \geq 0, \mathrm{y} \geq 0\)

    After plotting inequalities, we got feasible region as shown in the image.

    Now, there are 3 corner points \((0,4),(2,3)\) and \((4,0)\).

    At \((0,4)\), value of \(Z=-3 \times 0+4 \times 4=16\)

    At \((2,3)\), value of \(\mathrm{Z}=-3 \times 2+4 \times 3=6\)

    \(\operatorname{At}(4,0)\), value of \(\mathrm{Z}=-3 \times 4+4 \times 0=-12\)

    So, minimum value of \(\mathrm{Z}=-12\).

  • Question 15
    4 / -1

    A committee has 6 members having weights (In kg) as 45, 50, 65, 72, 63, 35. Find the standard deviation of their weights.

    Solution

    Given:

    Group of 6 people having weights 45, 50, 65, 72, 63, 35 (in kgs)

    Formula Used:

    Mean \(=\frac{\text { Sum of all the observations }}{\text { Total number of observations }}\)

    Standard deviation \(=\sqrt{\left[\frac{(\sum \mathrm{X}^{2})}{\mathrm{N}}\right]}\) where \(\sum x^{2}\) is the summation of the square of deviation of all observations from Mean.

    Sum of all observations = (45 + 50 + 65 + 72 + 63 + 35) = 330

    Mean \(= \frac{330}{6}\)

    ⇒ Mean = 55

    Observations

    Mean

    Deviation 

    from Mean (x)

    Square

    of deviation (x2)

    45

    55

    -10

    100

    50

    55

    -5

    25

    65

    55

    10

    100

    72

    55

    17

    289

    63

    55

    8

    64

    35

    55

    -20

    400

    \(\Sigma x^{2}=(100+25+100+289+64+400)\)

    \(\Rightarrow \Sigma x^{2}=978\)

    Standard Deviation \((\sigma)=\sqrt{\left(\frac{978}{6}\right)}\)

    \(\Rightarrow \sigma=\sqrt{163}\)

    ∴ The standard deviation of given data set of weights is \(\sqrt{163}\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now