Self Studies

Mathematics Test-2

Result Self Studies

Mathematics Test-2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Let \(f(2)=2\) and \(f(x)=2\). Then, \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\) is given by:

    Solution

    Given here:

    \(f(2)=2\) and \(f(x)=2\).

    Let us check the form by putting \(x = 2\), we get:

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    \(=\frac{2(2)-2(2)}{2-2}\)

    \(=\frac{0}{0}\)

    Apply L’ hospital’s rule,

    \(\lim _{x \rightarrow a} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(x)}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{f}(\mathrm{x}))}{\frac{d}{d x}(\mathrm{~g}(\mathrm{x}))}=\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\mathrm{f}^{\prime}(x)}{\mathrm{g}^{\prime}(x)}\)

    \(\lim _{x \rightarrow 2} \frac{x f(2)-2 f(x)}{x-2}\)

    Differentiating the numerator and the denominator in above, we get:

    \(=\lim _{x \rightarrow 2} \frac{\frac{d}{d x}(x f(2)-2 f(x))}{\frac{d}{d x}(x-2)}\)

    \(=\lim _{x \rightarrow 2} \frac{f(2)-2 f^{\prime}(x)}{1}\)

    Now, take limit at x = 2

    \(\lim _{x \rightarrow 2}=f(2)-2 f^{\prime}(2)\)

    \(=2-2(2)\)

    \(=-2\)

  • Question 2
    4 / -1

    Find the value of \(\lim _{{x} \rightarrow 5} \frac{{x}^{2}-25}{{x}^{2}-2 {x}-10}\)

    Solution

    Given,

    \(\lim _{{x} \rightarrow 5} \frac{{x}^{2}-25}{{x}^{2}-2 {x}-10}\)

    Putting the value \(x \rightarrow 5\) in above equation, we get:

    \(=\frac{5^{2}-25}{5^{2}-2 \times 5-10}\)

    \(=\frac{0}{5}\)

    \(=0\)

  • Question 3
    4 / -1

    Find the equation of the plane through the line of intersection of the planes \(x+y+z=1\) and \(2 x+3 y+4 z=5\) which is perpendicular to the plane \(x-y+z=0 ?\)

    Solution

    Here, we have to find the equation of plane passing through the line of intersection of planes \(x+y+z=1\) and \(2 x+3 y+4 z=5\) which is perpendicular to plane \(x-y+z=0\)

    As we know that, equation of a plane passing through the intersection of these planes is given by:\(\left(a_{1} x+b_{1} y+c_{1} z+d\right)+\lambda\left(a_{2} x+b_{2} y+c_{2} z+d\right)=0\), where \(\lambda\) is a scalar

    \(\Rightarrow(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0\)

    \(\Rightarrow(1+2 \lambda) x+(3 \lambda+1) y+(1+4 \lambda) z-1-5 \lambda=0\).....(1)

    The direction ratios of the plane represented by (1) are: \((1+2 \lambda),(3 \lambda+1),(1+4 \lambda)\) The direction ratios of the plane \(x-y+z=0\) are: \(1,-1,1\)

    \(\because\) plane represented by \((1)\) and is perpendicular to plane \(x-y+z=0\)

    \(\Rightarrow 1+2 \lambda-3 \lambda-1+1+4 \lambda=0\)

    \(\Rightarrow 3 \lambda+1=0\)

    \(\Rightarrow \lambda=\frac{-1}{3}\)

    By substituting \(\lambda=\frac{-1}{3}\) in equation (1), we get,

    \(\Rightarrow \mathrm{x}-\mathrm{z}+2=0\)

  • Question 4
    4 / -1

    Find the 5th term form the end in the expansion of \(\left(x-\frac{1}{x}\right)^{12} ?\)

    Solution

    In the expansion of \((a+b)^{n}\) the general term is given by: \(T_{r+1}={ }^{n} C_{r} . a^{n-r}.b^{r}\)

    Given: \(\left(x-\frac{1}{x}\right)^{12}\)

    As we know that, in the expansion of \((a+b)^{n}\), the rth term from the end is \([(n+1)-r+1]=(n-r+2)\) th term from the beginning.

    Here, \(n=12\) and \(r=5\)

    So, the 5 th term from the \(=[(12+1)-5+1]=9\) th term from the beginning.

    \(T_{9}=T_{(8+1)}={}^{12} C_{8} .(x)^{4} .(\frac{-1}{x})^{8}\)

    \(\Rightarrow T_{9}=T_{(8+1)}=(-1)^{8} .{}^{12} C_{8} .(x)^{4} .(\frac{1}{x})^{8}\)

    \(=\frac{12 !}{8 ! 4 !} \times x^{4} \times \frac{1}{x^{8}}\)

    \(=\frac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2} \times \frac{1}{x^{4}}\)

    \(\Rightarrow T_{9}=\frac{495}{x^{4}}\)

  • Question 5
    4 / -1

    The middle term of A.P. 5, 12, 19, ..., 215 is:

    Solution

    The given AP series is \(5,12,19, \ldots, 215\)

    First term \((a)=5\)

    Common differenece \((d)=12-5=7\)

    \(n^{\text {th }}\) term \(=a_{n}=215\)

    As we know,

    \(n^{\text {th }}\) term is given by,

    \(a_{n}=a+(n-1) d\)

    \(\therefore 215=5+(n-1) \times 7\)

    \(\Rightarrow 210=(n-1) \times 7 \)

    \(\Rightarrow n-1=30 \)

    ⇒ 31

    Here, \(n\) is an odd number.

    So, the middle term of the given AP will be \(\left(\frac{n+1}{2}\right)^{\text {th }}\) term.

    \(\therefore\) Middle term \(=\left(\frac{ n +1}{2}\right)^{\text{th}}\) term

    \(=\left(\frac{31+1}{2}\right)^{\text{th} }\) term

    \(=16^{\text {th}}\) term

    Now,

    \(a_{16}=a+15 d\)

    \(=5+15 \times 7\)

    \(=5+105\)

    \(=110\)

    So, the middle of the given AP series is \(110\).

  • Question 6
    4 / -1

    Find the standard deviation of \(15,20,18,22,25\)?

    Solution

    Given:

    Number are\(15, 20, 18, 22 \mathrm {and} 25 \)

    \(\text { Mean }=\frac{\sum x}{n} \)

    \(=\frac{(15+20+18+22+25)}{5} \)

    \(=\frac{100}{5}=20\)

    X

    (X –mean)

    (X –mean)2

    15

    -5

    25

    20

    0

    0

    18

    -2

    4

    22

    2

    4

    25

    5

    25

    Total = 58

    Standard deviation \(=\sqrt{\frac{58}{5}}=\sqrt{11.6}\)

  • Question 7
    4 / -1

    Let \(\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}\). If \(\vec{d}\) is a unit vector such that \(\vec{a} \vec{d}=0=[\vec{b} \vec{c} \vec{d}],\) then \(\vec{d}\) equals:

    Solution

    Let, \(\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}\)

    where \(x^{2}+y^{2}+z^{2}=1 \ldots(1)\)

    \((\vec{d}\) being unit vector\() \quad \therefore \vec{a} \vec{d}=0\)

    \(\Rightarrow x-y=0 \Rightarrow x=y \ldots(2)\)

    \([\vec{b} \vec{c} \vec{d}]=0 \Rightarrow\left|\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1=0 \\ x & y & z\end{array}\right|\)

    \(\Rightarrow x+y+z=0\)

    Using equation \((2)\)

    \(\Rightarrow 2 x+z=0\)

    \(\Rightarrow z=-2 x \ldots(3)\)

    From \((1),(2)\) and \((3)\)

    \(x^{2}+x^{2}+4 x^{2}=1 \Rightarrow x=\pm \frac{1}{\sqrt{6}}\)

    \(\therefore d=\pm\left(\frac{1}{\sqrt{6}} \hat{i}+\frac{1}{\sqrt{6}} \hat{j}-\frac{2}{\sqrt{6}} \hat{k}\right)=\pm\left(\frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}\right)\)

  • Question 8
    4 / -1

    \(\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}\) is equal to:

    Solution

    \(\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)\)

    \(=\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \frac{2}{9}}\right)\)

    \(=\tan ^{-1}\left(\frac{1}{2}\right)\)

    \(=\frac{1}{2}\left(2 \tan ^{-1}\left(\frac{1}{2}\right)\right)\)

    \(\Rightarrow \frac{1}{2} \cos ^{-1}\left(\frac{1-\left(\frac{1}{2}\right)^{2}}{1+\left(\frac{1}{2}\right)^{2}}\right)=\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)\) \(\left\{\because 2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}\right\}\)

  • Question 9
    4 / -1
    Let \(z\) be a complex number satisfying \(z^{2}+z+1=0\). If \(n\) is not a multiple of 3 , then the value of \(z^{n}+z^{2 n}\) \(=\)____________
    Solution
    Let, \(z=x+i y\)
    \(\Rightarrow z^{2}=(x+i y)(x+i y)=x^{2}-y^{2}+2 i x y\)
    \(\therefore z^{2}+z+1=0\)
    \(x^{2}-y^{2}+2 i x y+x+i y+1=0\)
    \(\left(x^{2}-y^{2}+x+1\right)+i(2 x y+y)=0\)
    Separating real and imaginary parts
    \(x^{2}-y^{2}+x+1=0\).....(i)
    \(2 x y+y=0\).....(ii)
    \(y(2 x+1)=0\)
    \(\Rightarrow y \neq 0 \Rightarrow 2 x+1=0 \Rightarrow x=-\frac{1}{2}\)
    From equation (i),
    \(\left(-\frac{1}{2}\right)^{2}-y^{2}-\frac{1}{2}+1=0\)
    \(\Rightarrow \frac{1}{4}+\frac{1}{2}=y^{2} \Rightarrow y=\frac{\sqrt{3}}{2}\)
    \(\therefore\) Complex numbers \(z=-\frac{1}{2}+\frac{\sqrt{3}}{2} i\)
    \(\Rightarrow z^{2}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i\)
    \(\therefore z^{n}+z^{2 n}=z^{n}\left(1+z^{2}\right)\)
    \(=z^{n}\left(1-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\)
    \(=z^{n}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\)
    \(\because\) Let, \({n}=2\)
    \(=z^{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\)
    \(=\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\left(\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\)
    \(=-\frac{1}{4}+\frac{\sqrt{3}}{4} i-\frac{\sqrt{3}}{4} i+\frac{3}{4} i^{2}\)
    \(=-\frac{1}{4}-\frac{3}{4}=-1\)
  • Question 10
    4 / -1

    What is the angle between the two lines whose direction numbers are \((\sqrt{3}-1,-\sqrt{3}-1,4)\) and \((-\sqrt{3}-1, \sqrt{3}-1,4)\)?

    Solution

    If \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are a plane equations, then angle between planes can be found using the following formula:

    \(\cos \theta=\frac{ a _{1} a _{2}+ b _{1} b _{2}+ c _{1} c _{2}}{\sqrt{ a _{1}^{2}+ b _{1}^{2}+ c _{1}^{2}} \sqrt{ a _{2}^{2}+ b _{2}^{2}+ c _{2}^{2}}}\)

    Here,

    \(a_{1}=\sqrt{3}-1\)

    \(a_{2}=-\sqrt{3}-1\)

    \(b_{1}=-\sqrt{3}-1\)

    \(b_{2}=\sqrt{3}-1\)

    \(c_{1}=4\)

    \(c_{2}=4\)

    Therefore, required angle will be given by:

    \(\cos \theta=\frac{ a _{1} a _{2}+ b _{1} b _{2}+ c _{1} c _{2}}{\sqrt{ a _{1}^{2}+ b _{1}^{2}+ c _{1}^{2}} \sqrt{a_{2}^{2}+ b _{2}^{2}+ c _{2}^{2}}}\)

    \(\cos \theta=\frac{-2-2+16}{\sqrt{24} \sqrt{24}}\)

    \(=\frac{12}{24}\)

    \(=\frac{1}{2}\)

    \(\cos \theta = \cos \frac{\pi}{3}\)

    \(\Rightarrow \theta=\frac{\pi}{3}\)

  • Question 11
    4 / -1

    Tangents are drawn to the hyperbola \(4 x^{2}-y^{2}=36\) at the points \(P\) and \(Q\). If these tangents intersect at the point \(T(0,3)\) then find the area of \(\triangle P T Q\).

    Solution

    Equation of hyperbola can be written as, \(\frac{4x^{2}}{36}-\frac{y^{2}}{36}=1\) or \(\frac{x^{2}}{9}-\frac{y^{2}}{36}=1\)

    Let the equation of tangent at any point \(P(x_{1}, y_{1})\) is \(\frac{xx^{2}}{a^{2}}-\frac{yy^{2}}{b^{2}}=1\)

    As tangent is passing through the point \((0,3)\)

    So, \(\frac{0}{a^{2}}-\frac{3y}{36}=1\)

    \(y=-12\) and

    Again, \(4 x^{2}-y^{2}=36\)

    Using value of \(y\), we have \(x=\pm 3 \sqrt{5}\)

    \(\frac{x^{2}}{9}-\frac{y^{2}}{36}=1\)

    So, the coordinates of \(P\) and \(Q\) are \((3 \sqrt{5},-12)\) and \((-3 \sqrt{5},-12)\) respectively.

    Now, area of \(\triangle TPQ\),

    \(A=\frac{1}{2}\left|\begin{array}{ccc}3 \sqrt{5} & -12 & 1 \\ -3 \sqrt{5} & -12 & 1 \\ 0 & 3 & 1\end{array}\right|\)

    \(=\frac{1}{2}|3 \sqrt{5}(-12-3)+12(-3 \sqrt{5}-0)+1(-9 \sqrt{5}-0)|\)

    \(=\frac{1}{2}|-45 \sqrt{5}-36 \sqrt{5}-9 \sqrt{5}|\)

    \(=\frac{1}{2}|90 \sqrt{5}|\)

    \(=45 \sqrt{5}\)

  • Question 12
    4 / -1

    Each of four particles move along an \(x\)-axis. Their coordinates (in meters) as functions of time (in seconds) are given by:

    a) particle \(1: x(t)=3.5-2.7 t^{3}\)

    b) particle \(2: x ( t )=3.5+2.7 t ^{3}\)

    c) particle \(3: x(t)=3.5-2.7 t^{2}\)

    d) particle \(4: x(t)=3.5-3.4 t-2.7 t^{2}\)

    Which of these particles have constant acceleration?

    Solution

    Concept:

    If \(x=f(t)\) defines a position vector of a particle then the first derivative represents the velocity of the particle and the second derivative represent the acceleration of the particle.

    Now If, \(\frac{d^{2} x}{d t^{2}} \neq f(t)\) then it represents a constant acceleration.

    Calculation:

    Given:

    Particle \(1: x(t)=3.5-2.7 t^{3}\)

    Particle \(2: x(t)=3.5+2.7 t^{3}\)

    Particle \(3: x(t)=3.5-2.7\) \(t ^{3}\)

    Particle \(4: x ( t )=3.5-2.7 t ^{3}\)

    The second derivative of Particle \(1\):

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d^{2}}{d t^{2}}\left(3.5-2.7 t^{3}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d}{d t}\left(0-2.7 \times 3 t^{2}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=-16.2 t\)

    which is a function of time '\(t\)' hence acceleration is not constant.

    The second derivative of Particle \(2\):

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d^{2}}{d t^{2}}\left(3.5+2.7 t^{3}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d}{d t}\left(0+2.7 \times 3 t^{2}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=16.2 t\)

    Which is a function of time '\(t\)' hence acceleration is not constant.

    The second derivative of Particle \(3\):

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d^{2}}{d t^{2}}\left(3.5-2.7 t^{2}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d}{d t}(0-2.7 \times 3 t)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=-8.1\)

    Which is not a function of time '\(t\)' hence acceleration is constant.

    The second derivative of Particle \(4\):

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d^{2}}{d t^{2}}\left(3.5-3.4 t-2.7 t^{2}\right)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=\frac{d}{d t}(0-3.4-2.7 \times 2 t)\)

    \(\frac{d^{2}}{d t^{2}} x(t)=-5.4\)

    Which is not a function of time '\(t\)' hence acceleration is constant.

    So only particle c and particle d have Constant acceleration.

  • Question 13
    4 / -1

    If \(a_{1}, a_{2}, a_{3}, \ldots, a_{9}\) are in \(G . P_{.}\), then what is the value of the determinant \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right| ?\)

    Solution

    Let the common ratio of the qiven G.P. be \(r\).

    Let \(D=\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

    Using \(C_{1} \rightarrow C_{1}-C_{2}\) and \(C_{2} \rightarrow C_{2}-C_{3}\), we get,

    \(\Rightarrow D=\left|\begin{array}{lll}\ln a_{1}-\ln a_{2} & \ln a_{2}-\ln a_{3} & \ln a_{3} \\ \ln a_{4}-\ln a_{5} & \ln a_{5}-\ln a_{6} & \ln a_{6} \\ \ln a_{7}-\ln a_{8} & \ln a_{8}-\ln a_{9} & \ln a_{9}\end{array}\right|\)

    \(\Rightarrow D=\left|\begin{array}{lll}\ln \frac{a_{1}}{a_{2}} & \ln \frac{a_{2}}{a_{3}} & \ln a_{3} \\ \ln \frac{a_{4}}{a_{5}} & \ln \frac{a_{5}}{a_{6}} & \ln a_{6} \\ \ln \frac{a_{7}}{a_{8}} & \ln \frac{a_{8}}{a_{9}} & \ln a_{9}\end{array}\right|\)

    \(\Rightarrow D=\left|\begin{array}{lll}\ln r & \ln r & \ln a_{3} \\ \ln r & \ln r & \ln a_{6} \\ \ln r & \ln r & \ln a_{9}\end{array}\right|\)

    Using \(C_{1} \rightarrow C_{1}-C_{2}\), we get,

    \(\Rightarrow D=\left|\begin{array}{ccc}0 & \ln r & \ln a_{3} \\ 0 & \ln r & \ln a_{6} \\ 0 & \ln r & \ln a_{9}\end{array}\right|\)

    Expanding along \(C_{1}\), we get,

    \(\Rightarrow D=0\)

  • Question 14
    4 / -1

    Find the area between \(y=2 x^{2}\) and \(y+6 x-8=0\).

    Solution

    Given:

    Curve \(1: y=2 x^{2}=f(x)\) (say)

    Curve 2: \(y+6 x-8=0\)

    \(\Rightarrow \mathrm{y}=8-6 \mathrm{x}=\mathrm{g}(\mathrm{x})\) (say)

    To find the intersections (or limits of the area) putting value of y from curve 1

    \(\Rightarrow 2 x^{2}=8-6 x\)

    \(\Rightarrow 2 x^{2}+6 x-8=0\)

    \(\Rightarrow 2 x^{2}+6 x-8=0\)

    \(\Rightarrow(2 x-2)(x+4)=0\)

    \(\Rightarrow x_{1}=-4, x_{2}=1\)

    Now the required area (A) is:

    \(A=\left|\int_{x_{1}}^{x_{2}}[f(x)-g(x)] d x\right|\)

    \(\Rightarrow A=\left|\int_{-4}^{1}\left[2 x^{2}-(8-6 x)\right] d x\right|\)

    \(\Rightarrow A=\left|\int_{4}^{1}\left[2 x^{2}-8+6 x\right] d x\right|\)

    \(\Rightarrow A=\left|\left[\frac{2 x^{3}}{3}-8 x+\frac{6 x^{2}}{2}\right]_{-4}^{1}\right|\)

    \(\Rightarrow A=\left|\frac{2}{3}-8+3-\left(\frac{2(-4)^{3}}{3}-8(-4)+3(-4)^{2}\right)\right|\)

    \(\Rightarrow A=\left|\frac{-13}{3}-\frac{(-128)}{3}-32-48\right|\)

    \(\Rightarrow A=\left|\frac{(-125)}{3}\right|\)

    \(\Rightarrow A=\frac{125}{3}\)

  • Question 15
    4 / -1

    Construct a \(3 \times 2\) matrix whose elements are given by \(a _{ ij }=\frac{1}{3}|2 i + j |\).

    Solution
    As we know,
    In general, a \(3 \times 2\) matrix is given by,
    \(A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]\)
    Given,
    \(a _{ ij }=\frac{1}{3}|2 i + j |\)
    Here \( i =1,2,3\) and \( j =1,2 \)
    \(\begin{aligned}& a _{11}=\frac{1}{3}|2+1|=1, a _{12}=\frac{1}{3}|2+2|=\frac{4}{3} \\
    & a _{21}=\frac{1}{3}|4+1|=\frac{5}{3}, a _{22}=\frac{1}{3}|4+2|=\frac{6}{3}=2 \\
    & a _{31}=\frac{1}{3}|6+1|=\frac{7}{3}, a _{32}=\frac{1}{3}|6+2|=\frac{8}{3}
    \end{aligned}
    \)
    So, the required matrix is \(\left[\begin{array}{cc}1 & \frac{4}{3} \\ \frac{5}{3} & 2 \\ \frac{7}{3} & \frac{8}{3}\end{array}\right]\).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now