Let us consider two AP's having first term \(a _{1}\) and \(a _{2}\) and the common difference are \(d _{1}\) and \(d _{2}\) respectively.
According to the question,
\(\frac{ S _{1}}{ S _{2}}=\frac{3 n +8}{7 n +15} \)
As we know,
\(S_n=\frac{n}{2}[2a+(n-1) \times d]\)
\(\therefore \frac{\left.\frac{ n }{2}\left[2 a _{1}+( n -1) d _{1}\right)\right]}{\left.\frac{ n }{2}\left[2 a _{2}+( n -1) d _{2}\right)\right]}=\frac{3 n +8}{7 n +15} \)
\(\Rightarrow \frac{\left.\left[ a _{1}+\left(\frac{ n -1}{2}\right) d _{1}\right)\right]}{\left[ a _{2}+\left(\frac{ n -1}{2}\right) d _{2}\right]}=\frac{3 n +8}{7 n +15} \)...(1)
As we know,
\(n^{\text{th}}\) term of AP \((a_n)=a+(n-1) \times d\)
So the ratio of \(12^{\text {th }}\) term of first AP and second AP \(=\frac{ a _{1}+(12-1) d _{1}}{ a _{2}+(12-1) d _{2}}\)
\(=\frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}\)...(2)
From (1) and (2), we can write
\(\frac{ n -1}{2}=11\)
\(\Rightarrow n-1=22\)
\(\Rightarrow n=23\)
Putting \(n = 23\) in equation (1), we get
\(\frac{\left.\left[ a _{1}+\left(\frac{23 -1}{2}\right) d _{1}\right)\right]}{\left[ a _{2}+\left(\frac{ 23 -1}{2}\right) d _{2}\right]}=\frac{3 \times 23 +8}{7 \times 23 +15} \)
\(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{69+8}{161+15}\)
\(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{77}{176}\)
\(\Rightarrow \frac{ a _{1}+11 d _{1}}{ a _{2}+11 d _{2}}=\frac{7}{16}\)
\(\Rightarrow \frac{12^{\text {th }} \text { term of first AP}}{12^{\text {th }} \text {term of second AP}}=\frac{7}{16}\)
So, the ratio of \(12^{\text {th }}\) term offirst AP and second APis \(7:16\).