Self Studies

Mathematics Test-4

Result Self Studies

Mathematics Test-4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\), then what is the value of \(\alpha^{3}+\beta^{3}\) ?

    Solution

    Given, \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\).

    \(\Rightarrow \alpha+\beta=2\) and \(\alpha \beta=4\)

    Consider, \(\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-3 a \beta\right)\)

    \(\left.\Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)\left[(\alpha+\beta)^{2}-3 a \beta\right)\right]\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(2)\left[(2)^{2}-3(4)\right]\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(2)(-8)\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=-16\)

    So, if \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\), then the value of \(\alpha^{3}+\beta^{3}=-16\).

  • Question 2
    4 / -1

    If \(A=\left\{x \mid x^{2}-5 x-6=0\right\}\) and \(B=\left\{y \mid y^{2}-7 y-8=0\right\}\). Then find \(A \cup(A \cap B)\) ?

    Solution

    Here, \(A=\left\{x \mid x^{2}-5 x-6=0\right\}\)

    \(x^{2}-5 x-6=0\)

    \(\Rightarrow x^{2}-6 x+x-6=0\)

    \(\Rightarrow x(x-6)+1(x-6)=0\)

    \(\Rightarrow(x+1)(x-6)=0\)

    \(\therefore x=-1,6\)

    Which can be represented in roaster form as: \(A=\{-1,6\}\).

    Similarly, \(B=\left\{y \mid y^{2}-7 y-8=0\right\}\)

    \(y^{2}-7 y-8=0\)

    \(\Rightarrow y^{2}-8 y+y-8=0\)

    \(\Rightarrow y(y-8)+1(y-8)=0\)

    \(\Rightarrow(y+1)(y-8)=0\)

    \(\therefore y=-1,8\)

    Which can be represented in roaster from as: \(B=\{-1,8\}\).

    Let, \(C=(A \cap B)=\{-1\}\)

    Now,\(A \cup(A \cap B)\)

    \(=A \cup C\)

    \(=\{-1,6\}\)

  • Question 3
    4 / -1

    If the correlation coefficient between \(x\) and \(y\) is \(0.6\) covariance is 27 variance of \(y\) is 25 , then what is the variance of \(x\)?

    Solution

    Given:

    Correlation coefficient between \(x\) and \(y, r(x, y)=0.6\)

    Covariance of x and y, Cov(x, y) \(=27\)

    Variance of \(y, \operatorname{Var}(y)=\sigma^{2}(y)=25\)

    Variance of \(x, \operatorname{Var}(x)=\sigma^{2}(x)\)

    We know that,

    \(r(x, y)=\frac{\operatorname{Cov}(x, y)}{\sigma(x) \sigma(y)}\)

    \(\Rightarrow \sigma(x)=\frac{\operatorname{Cov}(x, y)}{\sigma(y) \times r(x, y)}\)

    \(\Rightarrow \sigma(x)=\frac{27}{5 \times 0.6}\)

    \(\Rightarrow \sigma(x)=9\)

    Variance of \(x, \sigma^{2}(x)=81\)

  • Question 4
    4 / -1

    \(\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{(x-3)}\) equals:

    Solution
    \(\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{x-3}\)
    \(=\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{x} \cdot\left(\frac{x-5}{x-2}\right)^{-3}\)
    \(\operatorname{since} \lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)\)
    \(=\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{x} \cdot \lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{-3}\)
    Now let's evaluate the limits of both the functions separately,
    \(\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{-3}\)
    \(=\lim _{x \rightarrow \infty}\left(\frac{x\left(1-\frac{5}{x}\right)}{x\left(1-\frac{2}{x}\right)}\right)^{-3}\)
    \(=\lim _{x \rightarrow \infty}\left(\frac{1-\frac{5}{x}}{1-\frac{2}{x}}\right)^{-3}\)
    apply infinity property,
    \(=\left(\frac{1-0}{1-0}\right)^{-3}\)
    \(=1\)
    Now, \(\lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{x}\)
    \(=\lim _{x \rightarrow \infty} e^{x \ln \left(\frac{x-5}{x-2}\right)}\)
    Now apply the limit chain rule,
    Now evaluate \(\lim _{x \rightarrow \infty} x \ln \left(\frac{x-5}{x-2}\right)\)
    \(=\lim _{x \rightarrow \infty} \frac{\ln \left(\frac{x-5}{x-2}\right)}{\frac{1}{x}}\)
    Now let's apply the L'Hospital's rule to evaluate the limit,
    Test L'Hospital condition=0/0
    \(=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(\ln \left(\frac{x-5}{x-2}\right)\right)}{\frac{d}{d x}\left(\frac{1}{x}\right)}\)
    \(=\lim _{x \rightarrow \infty} \frac{\frac{1}{\frac{x-5}{x-2}} \frac{d}{d x}\left(\frac{x-5}{x-2}\right)}{-\frac{1}{x^{2}}}\)
    \(=\lim _{x \rightarrow \infty} \frac{\left(\frac{x-2}{x-5}\right) \cdot \frac{(x-2) \frac{d}{d x}(x-5)-(x-5) \frac{d}{d x}(x-2)}{(x-2)^{2}}}{-\frac{1}{x^{2}}}\)
    \(=\lim _{x \rightarrow \infty} \frac{\left(\frac{x-2}{x-5}\right) \cdot\left(\frac{3}{(x-2)^{2}}\right)}{-\frac{1}{x^{2}}}\)
    \(=\lim _{x \rightarrow \infty} \frac{-3 x^{2}}{(x-2)(x-5)}\)
    \(=\lim _{x \rightarrow \infty} \frac{-3 x^{2}}{x^{2}-7 x+10}\)
    Now again apply L'Hospital's rule,
    \(=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(-3 x^{2}\right)}{\frac{d}{d x}\left(x^{2}-7 x+10\right)}\)
    \(=\lim _{x \rightarrow \infty} \frac{-3 \cdot 2 x}{2 x-7}\)
    \(=\lim _{x \rightarrow \infty} \frac{-6 x}{2 x-7}\)
    Now again apply L'Hospital's rule,
    \(=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(-6 x)}{\frac{d}{d x}(2 x-7)}\)
    \(=\lim _{x \rightarrow \infty}\left(-\frac{6}{2}\right)\)
    \(=\lim _{x \rightarrow \infty}-3\)
    \(=-3\)
    \(= \lim _{x \rightarrow \infty} e^{x \ln \left(\frac{x-5}{x-2}\right)}=e^{-3}=\frac{1}{e^{3}}\)
    \(= \lim _{x \rightarrow \infty}\left(\frac{x-5}{x-2}\right)^{x-3}=\frac{1}{e^{3}} \cdot 1\)
    \(=\frac{1}{e^{3}}\)
    \(=e^{-3}\)
  • Question 5
    4 / -1

    For all positive integral values of \(n, 3^{3 n}-2 n+1\) is divisible by:

    Solution

    Given:

    \(P(n)=3^{3 n}-2 n+1\)

    Using the principle of mathematical induction,

    For \(n=1\)

    \(P(1): 3^{3(1)}-2(1)+1=26=2 \times 13\), so \(P(1)\) is true

    Let \(P(m)\) be true such that,

    \(P(m): 3^{3(m)}-2(m)+1=2 k\)

    We now need to prove that \(P(m+1)\) is also true, therefore,

    \(P(m+1): 3^{3(m+1)}-2(m+1)+1\)

    \(\Rightarrow 27 \times 3^{3 m}-2 m+1-2\)

    \(\Rightarrow(26+1) 3^{3 m}-2 m+1-2\)

    \(\Rightarrow 26 \times 3^{3 m}+\left(3^{3 m}-2 m+1\right)-2\)

    \(\Rightarrow 26 \times 3^{3 m}+2 k-2\)

    \(\Rightarrow 2\left(13 \times 3^{3 m}+k-1\right)\), which is divisible by 2.

  • Question 6
    4 / -1

    The function \(f(x)\) is defined as:

    \(f(x)=\left\{\begin{array}{c}b x^{2}-a, \text { if } x<-1 \\ a x^{2}-b x-2, \text { if } x \geq-1\end{array}\right.\)

    If \(f^{\prime}(x)\) is differentiable everywhere, the equation whose roots are \(a\) and \(b\) is:

    Solution

    Since the given function is differentiable, we can write:

    \(\lim _{x \rightarrow-1^{-}} f^{\prime}(x)=\lim _{x \rightarrow-1^{+}} f^{\prime}(x)\)

    \(\Rightarrow \lim _{x \rightarrow-1^{-}}(2 b x)=\lim _{x \rightarrow-1^{+}}(2 a x-b)\)

    \(\Rightarrow-2 b=-2 a-b\)

    \(\Rightarrow-b=-2 a\)

    \(\Rightarrow 2 a=b \ldots .(i)\)

    Since \(f(x)\) will also be continuous, we can write:

    \(\lim _{x \rightarrow-1^{-}}\left(b x^{2}-a\right)=\lim _{x \rightarrow-1+}\left(a x^{2}-b x-2\right)\)

    \(\Rightarrow b-a=a+b-2\)

    \(\Rightarrow 2 a=2\)

    \(\Rightarrow a=1\)

    Using Equation \((i)\):

    \(2 a=b\)

    \(\Rightarrow 2 \times 1=b\)

    \(\Rightarrow b=2\)

    These are the roots of the equation:

    \(x^{2}-3 x+2=0\)

  • Question 7
    4 / -1

    There were two women participating in a chess tournament. Every participant played two games with the other participants. The number of games that the men played between themselves proved to exceed by \(66\) the number of games that the men played with the women. The number of participants is:

    Solution

    Let there be '\(n\)' men participants.

    Then, the number of games that the men play between themselves is \(2\).\(^{n} C_{2}\) and the number of games that the men played with the women is \(2.(2 n)\).

    \(\therefore 2 .^{n} C_{2}-2. 2 n=66\) (given)

    \(\Rightarrow n(n-1)-4 n-66=0\)

    \(\Rightarrow n^{2}-5 n-66=0\)

    \(\Rightarrow(n+5)(n-11)=0\)

    \(\Rightarrow n=11\)

    Number of participants \(=11\) men \(+2\) women \(=13\)

  • Question 8
    4 / -1
    If it is possible to draw a line which belong to all the given family of lines
    \(y-2 x+1+\lambda_{1}(2 y-x-1)=0\),
    \(3 y-x-6+\lambda_{2}(y-3 x+6)=0\),
    \(a x+y-2+\lambda_{3}(6 x+a y-a)=0,\) then
    Solution

    \(y-2 x+1+\lambda_{1}(2 y-x-1)=0\) always passes through intersection of \(y-2 x+1=0\) and \((2 y-x-1)=0\).And their intersection is \((1,1)\) \(\equiv \mathrm{Q}\)

    Similarly \(3 y-x-6=0+\lambda_{2}(y-3 x+6)=0\) passes through \((3,3)\) \(\equiv P\)

    Equation of \(\mathrm{PQ}\) is : \(y=x\)

    According to given condition, third family of equation should always pass through the point which lies on \(y=x\)

    Putting \(y=x\) in \(a x+y-2+\lambda_{3}(6 x+a y-a)=0\)

    we get \(a x+x-2=0\) and \(6 x+\) ay \(-a=0\)

    \(\Rightarrow \frac{2}{a+1}=\frac{a}{6+a}\)

    \(\Rightarrow 12+2a = a^{2}+a\)

    \( \Rightarrow a^{2}- a -12=0\)

    \(\Rightarrow(a-4)(a+3)=0\)

    \(\therefore a=-3\)

  • Question 9
    4 / -1

    If one end of a diameter of the circle \(x^{2}+y^{2}-4 x-6 y+11=0\) is \((3,4),\) then find the coordinates of the other end of the diameter.

    Solution

    Given equation of the circle is:

    \(x^{2}+y^{2}-4 x-6 y+11=0\)

    \(\therefore \quad 2 g=-4\) and. \(2 f=-6\)

    So, the centre of the circle is \(C(-g,-f) \equiv C(2,3)\) \(A(3,4)\) is one end of the diameter. Let the other end of the diameter be \(B\left(x_{1}, y_{1}\right)\)

    Here, mid point of \(A B\) is \(C\).

    \(\therefore 2=\frac{3+x_{1}}{2}\) and \(3=\frac{4+y_{1}}{2}\)

    \(\Rightarrow x_{1}=1\) and \(y_{1}=2\)

    So, the coordinates of other end of the diameter are (1,2).

  • Question 10
    4 / -1
    \(\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha)}=x,\) then \(\sin x=\)
    Solution

    Given,

    \(\cot ^{-1}(\sqrt{\cos \alpha})-\tan ^{-1}(\sqrt{\cos \alpha})=x\)

    \(\tan ^{-1}\left(\frac{1}{\sqrt{\cos \alpha}}\right)-\tan ^{-1}(\sqrt{\cos \alpha})=x\)

    \(\Rightarrow \tan ^{-1} \frac{\frac{1}{\sqrt{\cos \alpha}}-\sqrt{\cos \alpha}}{1+\frac{1}{\sqrt{\cos \alpha}} \cdot \sqrt{\cos \alpha}}=x\) \((\because\tan^{-1} x – \tan^{-1} y = \tan^{-1}(\frac{(x-y)}{(1+xy)})\), if the value \(xy > -1)\)

    \(\Rightarrow \tan ^{-1} \frac{1-\cos \alpha}{2 \sqrt{\cos \alpha}}=x\)

    \(\Rightarrow \tan x=\frac{1-\cos \alpha}{2 \sqrt{\cos \alpha}}\) or \(\cot x=\frac{2 \sqrt{\cos \alpha}}{1-\cos \alpha}\)

    \(=\tan ^{2} \frac{\alpha}{2}\)

  • Question 11
    4 / -1

    Solve the differential equation \(\frac{d y}{d x}+y \cos x=3 \cos x\).

    Solution

    \(\frac{d y}{d x}+y \cos x=3 \cos x \)

    \( I F=e^{\int \cos x d x} \)

    \( \Rightarrow I F=e^{\sin x}\)

    Now, \(y \times( IF )=\int Q ( IF ) dx\)

    \( \Rightarrow y \times e^{\sin x}=\int 3 \cos x \times e^{\sin x} d x \)

    \( \Rightarrow y e^{\sin x}=\int 3 e^{\sin x} \cos x~ d x\)

    Integrating, let \(\sin x=t \Rightarrow \cos x d x=d t\)

    \( \Rightarrow y e^{\sin x}=\int 3 e^t d t \)

    \( \Rightarrow y e^{\sin x}=3 e^t+c \)

    \( \Rightarrow y e^{\sin x}=3 e^{\sin x}+c\)

    (where \(c\) is integration constant)

  • Question 12
    4 / -1

    The polar coordinate of a point \((1, \sqrt{−3})\) is -

    Solution
    Given coordinate \(=(1,-\sqrt{3})\)
    Now \(\alpha=\tan ^{-1} \frac{|y|}{|x|}\)
    \(\alpha=\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)\)
    \(=\frac{\pi}{3}\)
    The point lies in the IV quadrant
    \({r}=\sqrt{{x}^{2}+{y}^{2}}\)
    \(=\sqrt{1+3}\)
    \(=2\)
    \(\therefore \theta=-\alpha\)
    \( \Rightarrow \theta=-\frac{\pi}{3}\)
    Polar Coordinate: \((r , \theta)\)
    And putting the value of \(r\) and \(\theta\), we get
    = \(\left(2,-\frac{\pi}{3}\right)\) or \(\left(-2, \frac{2 \pi}{3}\right)\)
  • Question 13
    4 / -1

    Equation of angle bisectors between \(x\) and \(y\)-axes are:

    Solution
    According to equation for the line \(y=mx+c\),
    After bisecting the angle with \(x\) axis, angle \(\theta= 45^{\circ}\) or \(135^{\circ}\)
    \(\therefore\ m=\tan\theta= \tan 45^{\circ}\) or \(\tan135^{\circ}\) \(=1\) or \(-1\)
    \(\Rightarrow\) According to equation....(i) and taking \(m=1,-1\) and \(c=0\),
    we get,
    \(y=\pm x\)
  • Question 14
    4 / -1

    If the points \((a, 0),\left(a t_{1}^{2}, 2 a t_{1}\right)\) and \(\left(a t_{2}^{2}, 2 a t_{2}\right)\) are collinear, write the value of \(t_{1} t_{2}\)

    Solution
    Given,
    For the points \((a, 0),\left(a t_{1}^{2}, 2 a t_{1}\right)\) and \(\left(a t_{2}^{2}, 2 a t_{2}\right)\) to be collinear, the following condition has to be:
    \(\left|\begin{array}{ccc}a & 0 & 1 \\ a t_{1}^{2} & 2 a t_{1} & 1 \\ a t_{2}^{2} & 2 a t_{2} & 1\end{array}\right|=0\)
    \(\Rightarrow a\left(2 a t_{1}-2 a t_{2}\right)-0+1\left(2 a^{2} t_{1}^{2} t_{2}-2 a^{2} t_{1} t_{2}^{2}\right)=0\)
    \(\Rightarrow 2 a^{2}\left(t_{1}-t_{2}\right)+2 a^{2} t_{1} t_{2}\left(t_{1}-t_{2}\right)=0\)
    \(\Rightarrow 2 a^{2}\left(t_{1}-t_{2}\right)\left(1+t_{1} t_{2}\right)=0\)
    \(\Rightarrow\left(t_{1}-t_{2}\right)=0~or\left(1+t_{1} t_{2}\right)=0(a \neq 0)\)
    \(\Rightarrow 1+t_{1} t_{2}=0~\left(\because t_{1} \neq t_{2}\right)\)
    \(\Rightarrow t_{1} t_{2}=-1\)
  • Question 15
    4 / -1

    Find the angle between two vectors \((\vec{a}=2 \hat{i}+\hat{j}-3 \hat{k})\) and \((\vec{b}=3 \hat{i}-2 \hat{j}-\hat{k})\).

    Solution

    \(\overrightarrow{a}=2 \hat{i}+\hat{j}-3 \hat{k}\) and \(\overrightarrow{b}=3 \hat{i}-2 \hat{j}-\hat{k}\)

    \(\vec{a} \cdot \vec{b}=(2 \hat{i}+\hat{j}-3 \hat{k})(3 \hat{i}-2 \hat{j}-\hat{k}) \)

    \(=6-2+3=7 \ldots .(1) \)

    \(|\vec{a}|=\sqrt{2^{2}+1^{2}+(-3)^{2}}=\sqrt{14} \ldots(2) \)

    \(|\vec{b}|=\sqrt{3^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{14} \ldots .(3) \)

    \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}\)

    Put the values from (1), (2) and (3) in above equation:

    \(=\frac{7}{\sqrt{14}. \sqrt{14}}=\frac{1}{2} \)

    \(\cos \theta=\cos 60^{\circ} , \theta=60^{\circ}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now