Self Studies

Mathematics Test-5

Result Self Studies

Mathematics Test-5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    How many 4-digit numbers can be formed using digits 1, 2, 3, 4, 7, 9 lying between 3000 and 5000, if repetition of digits is allowed?

    Solution

    Here, we have to form a 4 digit number lying between 3000 and 5000 using digits 1, 2, 3, 4, 7, 9 such that repetition of digits is allowed.

    Unit’s digit can be filled by any one of the given numbers

    ⇒ No. of ways to fill unit’s digit = 6

    Ten’s digit can be filled by any one of the given numbers ⇒ No. of ways to fill ten’s digit = 6

    Hundred’s digit can be filled by any one of the given numbers

    ⇒ No. of ways to fill hundredth digit = 6

    Thousand’s digit can be filled by 3 or 4 only

    ⇒ No. of ways to fill thousand’s digit = 2

    ∴ The no. of ways to form a 4 digit number lying between 3000 and 5000 using digits 1, 2, 3, 4, 7, 9 such that repetition of digits is allowed = 6 × 6 × 6 × 2 = 432

  • Question 2
    4 / -1

    If \(7 \sin \theta+24 \cos \theta=25\), then what is the value of \((\sin \theta+\cos \theta) ?\)

    Solution

    We know that,

    \(\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}\)

    \(\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}\)

    \(\sin ^{2} \theta+\cos ^{2} \theta=1\)

    \(7 \sin \theta+24 \cos \theta=25\)

    Dividing by \(25\) on both the sides, we get

    \(\frac{7}{25} \sin \theta+\frac{24}{25} \cos \theta=1 \quad \ldots\) (i)

    We know that,

    \(\sin ^{2} \theta+\cos ^{2} \theta=1\)

    \(\sin \theta \cdot \sin \theta+\cos \theta \cdot \cos \theta=1 \quad \ldots\) (ii)

    On comparing equation (i) andequation(ii)

    \(\sin \theta=\frac{7}{25}\)

    \(\cos \theta=\frac{24}{25}\)

    Now, \((\sin \theta+\cos \theta)\)

    \(=\frac{7}{25}+\frac{24}{25}\)

    \(=\frac{31}{25}\)

  • Question 3
    4 / -1

    The angle \(\theta\) between the vectors \(\vec{a}=5 \hat{i}-\hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}+\hat{j}-\hat{k}\) is:

    Solution

    We have two vectors \(\vec{a}=5 \hat{i}-\hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}+\hat{j}-\hat{k}\) We know that the angle \(\theta\) between two vectors \(\vec{a}\) and \(\vec{a}\) is:

    \(\theta=\cos ^{-1} \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|b|} \quad \ldots\) (1)

    Therefore,

    \(\vec{a} \cdot \vec{b}=(5 \hat{i}-\hat{j}+\hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})\)

    \(\Rightarrow \vec{a} \cdot \vec{b}=5 \hat{i}^{2}+5 \hat{i} \hat{j}-5 \hat{i} \hat{k}-\hat{i} \hat{j}-\hat{j}^{2}+\hat{j} \hat{k}+\hat{i} \hat{k}+\hat{j} \hat{k}-\hat{k}^{2}\)

    We know that, \(\left(\hat{i}^{2}=\hat{j}^{2}=\hat{k}^{2}=1\right)\) and \((\hat{i} \hat{j}=\hat{j} \hat{k}=\hat{i} \hat{k}=0)\)

    \(\therefore \vec{a} \cdot \vec{b}=5-1-1=3\)

    We also know that, if \(\vec{a}=(x \hat{i}+y \hat{j}+z \hat{k})\) then,

    \(|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}\)

    Therefore, according to the question,

    \(\Rightarrow|\vec{a}|=\sqrt{5^{2}+(-1)^{2}+1^{2}}=\sqrt{27}\)

    \(\Rightarrow|\vec{b}|=\sqrt{1^{2}+1^{2}+(-1)^{2}}=\sqrt{3}\)

    Putting all the above values in equation (1),

    \(\Rightarrow \theta=\cos ^{-1} \frac{3}{\sqrt{27} \times \sqrt{3}}\)

    \(\Rightarrow \theta=\cos ^{-1} \frac{1}{3}\)

  • Question 4
    4 / -1

    Consider a differential equation \(\frac{d y(x)}{d x}-y(x)= x\) with the initial condition \(y(0)=0\). Using Euler's first order method with a step size of \(0.1\), the value of \(y(0.3)\) is-

    Solution

    \(\frac{d y}{d x}-y=x, y(0)=0\)

    Step size \(=h=0.1\)

    Euler's first order formula is

    \(y_{1}+1=y_{i}+h f\left(x_{i}, y_{i}\right)\)

    \(y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)\)

    Here, \(x_{0}=0, y_{0}=y\left(x_{0}\right)=y(0)=0\)

    \(x_{1}=x_{0}+h=0+0.1=0.1\)

    \(f(x, y)=\frac{d y}{d x}=y+x\)

    \(\Rightarrow y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)\)

    \(=0+0.1 \times f(0,0)\)

    \(=0+0.1 \times(0+0)\)

    \(=0\)

    Now, \(x_{1}=0.1, y_{1}=0\)

    \(x_{2}=x_{0}+2 h=0+2 \times 0.1=0.2\)

    \(\Rightarrow y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right)\)

    \(=0+0.1 \times f(0.1,0)=0+0.1(0.1+0)=0.01\)

    Now \(x_{2}=0.2, y_{2}=0.01\)

    \(x_{3}=x_{0}+3 h=0+3 \times 0.1=0.3\)

    \(\Rightarrow y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right)\)

    \(=0.01+0.1 \times f(0.2,0.01)=0.01+0.1(0.2+0.01)=0.031\)

    \(\therefore\) at \(x_{3}=0.3, y_{3}=0.031\)

  • Question 5
    4 / -1
    Find the middle terms in the expansion of \(\left(2 x+\frac{1}{x}\right)^{8}\)
    Solution

    General term: General term in the expansion of \((x+y)^{n}\) is given by

    \(T _{( r +1)}={ }^{ n } C _{ r } \times x ^{ n - r } \times y ^{ r }\)

    Middle terms: The middle terms is the expansion of \((x+y)^{n}\) depends upon the value of \(n\).

    If \(n\) is even, then total number of terms in the expansion of \((x+\) \(y )^{ n }\) is \(n +1\). So there is only one middle term i.e. \(\left(\frac{ n }{2}+1\right)\) th term is the middle term.

    If \(n\) is odd, then total number of terms in the expansion of \(( x + y )^{ n }\) is \(n +1\). So there are two middle terms i.e. \(\left(\frac{ n +1}{2}\right)^{\text {th }}\) and \(\left(\frac{ n +3}{2}\right)^{\text {th }}\) are two middle terms.

    Here, we have to find the middle terms in the expansion of \(\left(2 x+\frac{1}{x}\right)^{8}\)

    Here \(n =8\) ( \(n\) is even number )

    Middle term \(=\left(\frac{ n }{2}+1\right)=\left(\frac{8}{2}+1\right)=5\) th term

    \(T _{5}= T _{(4+1)}={ }^{8} C _{4} \times(2 x )^{(8-4)} \times\left(\frac{1}{ x }\right)^{4}\)

    \(T _{5}={ }^{8} C _{4} \times 2^{4}\)

  • Question 6
    4 / -1

    Axis of a parabola lies along x-axis. If its vertex and focus are at distances \(2\) and \(4\) respectively from the origin, on the positive x-axis then which of the following points does not lie on it?

    Solution

    In this problem, we need to find the point from the option which does not lie which means the point which does not satisfy the equation of the parabola.

    To find the equation of parabola:

    From question, the parabola formed with the given vertex and focus on positive x axis is:


    Where,

    \({S}=\) Focus

    \(A=\) Vertex

    The general formula for horizontal parabola is:

    \((y-k)^{2}=4 a(x-h)\)

    Where,

    \((h, k)=\) Vertex

    \(a=\) Distance between vertex and focus

    Now, from question, we can understand that, \((h, k)=(2,0)\)

    Now, ' \(a\) ' is distance between point ' \(A\) ' and 'S'.

    The distance between two points is given by the formula:

    \(\mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)

    On substituting the point ' \(A\) ' and ' \(S\) ',

    \(\Rightarrow a=\sqrt{(4-2)^{2}+(0-0)^{2}}\)

    \(\Rightarrow a=\sqrt{(2)^{2}}\)

    \(\Rightarrow a=\sqrt{4}\)

    \(\therefore a=2\)

    So, the equation for the given parabola is:

    \(\Rightarrow(y-0)^{2}=4 \times 2(x-2)\)

    \(\therefore y^{2}=8(x-2)\)

    Substituting all the points given in the options:

    Option (A):

    \((5,2 \sqrt{6}) \Rightarrow({x}, {y})\)

    On substituting the point in the obtained parabola equation:

    \(\Rightarrow(2 \sqrt{6})^{2}=8(5-2)\)

    \(\Rightarrow(4 \times 6)=8(3)\)

    \(\Rightarrow 24=24\)

    \(\therefore 24-24=0\)

    This point satisfies the parabola equation.

    Option (B):

    \((8,6) \Rightarrow(x, y)\)

    On substituting the point in the obtained parabola equation:

    \(\Rightarrow(6)^{2}=8(8-2)\)

    \(\Rightarrow 36=8(6)\)

    \(\therefore 48-36=12\)

    This point does not satisfy the parabola equation.

    Option (C):

    \((6,4 \sqrt{2}) \Rightarrow(x, y)\)

    On substituting the point in the obtained parabola equation:

    \(\Rightarrow(4 \sqrt{2})^{2}=8(6-2)\)

    \(\Rightarrow(16 \times 2)=8(4)\)

    \(\Rightarrow 32=32\)

    \(\therefore 32-32=0\)

    This point satisfies the parabola equation.

    Option (D):

    \((4,-4) \Rightarrow(x, y)\)

    On substituting the point in the obtained parabola equation:

    \(\Rightarrow(-4)^{2}=8(4-2)\)

    \(\Rightarrow 16=8(2)\)

    \(\Rightarrow 16=16\)

    \(\therefore 16-16=0\)

    This point satisfies the parabola equation.

    So, the point which is not satisfying the parabola equation is in option b.

    Thus, option (B) does not lie within the parabola.

  • Question 7
    4 / -1

    If \(f(x)=2^{x}+1\), then \(f(-3), f(1)\) and \(f(3)-1\) are in:

    Solution

    Given:

    \(\Rightarrow f(x)=2^{x}+1\)

    \(\Rightarrow f(-3)=2^{-3}+1=\frac{1}{2^{3}}+1\)

    \(\Rightarrow f(-3)=\frac{1}{8}+1=\frac{9}{8}\)

    \(\Rightarrow f(1)=2+1=3\)

    \(\Rightarrow f(3)-1=2^{3}+1-1=8\)

    Now, we have \(\frac{9}{8}, 3\) and \(8\)

    Clearly, \((3)^{2}=8 \times \frac{9}{8}\)

    So, \([f(1)]^{2}=f(-3) \times(f(3)-1)\)

    We know, if \(a, b, c\) are in \(G . P\) then \(b^{2}=a c\)

    \(\therefore {f}(-3), {f}(1)\) and \(({f}(3)-1)\) are in G.P.

  • Question 8
    4 / -1

    Find the general solution of the equation, \(2 \cos (\frac{x}{3})+\sqrt{2}=0 ?\)

    Solution

    Given: \(2 \cos (\frac{x}{3})+\sqrt{2}=0\)

    \(\Rightarrow \cos (\frac{x}{3})=-\frac{\sqrt{2}}{2}=-\frac{1}{\sqrt{2}}\)

    As we know that, \(\cos (\frac{\pi}{4})=\frac{1}{\sqrt{2}}\)

    \(\Rightarrow \cos (\frac{x}{3})=-\cos (\frac{\pi}{4})=\cos (\pi-(\frac{\pi}{4}))\)

    \(\Rightarrow \cos (\frac{x}{3})=\cos (\frac{3\pi}{4})\)

    As we know that, if \(\cos \theta=\cos \alpha\) then \(\theta=2 \mathrm{n} \pi \pm \alpha, \alpha \in[0, \pi], {n} \in {Z}\). \(\Rightarrow \frac{x}{3}=2 {n} \pi \pm(\frac{3\pi}{4})\), where \({n} \in {Z}\).

    \(\Rightarrow x=6 n \pi \pm(\frac{9\pi}{4})\), where \(n \in Z\).

  • Question 9
    4 / -1

    The coefficient of \(x^{5}\) in the expansion of \((1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}\) is:

    Solution

    Given:

    \((1+x)^{21}+(1+x)^{22}+\ldots+(1+x)^{30}\)

    \(=(1+x)^{21}\left[1+(1+x)^{1}+\ldots+(1+x)^{9}\right]\)

    \(=(1+x)^{21}\left[\frac{(1+x)^{10}-1}{(1+x)-1}\right]\)

    \(=\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]\)

    \(\therefore\) Coefficient of \(x^{5}\) in the given expression

    \(=\) Coefficient of \(x^{5}\) in \(\frac{1}{x}\left[(1+x)^{31}-(1+x)^{21}\right]\)

    \(=\) Coefficient of \(x^{6}\) in \(\left[(1+x)^{31}-(1+x)^{21}\right]\)

    \(=\) \(^{31} C_{6}-^{21} C_{6}\)

  • Question 10
    4 / -1
    If the rth term in the expansion of \(\left(\frac{x^{3}}{3}-\frac{2}{x^{2}}\right)^{10}\) contains \(x^{20},\) then \(r=\)
    Solution
    We have the general term of \((x+a)^{n}\) is
    \(T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}\)
    Now consider \(\left(\frac{x^{3}}{3}-\frac{2}{x^{2}}\right)^{10}\)
    Here,
    \( T_{r+1}={ }^{10} C_{r}\left(\frac{x^{3}}{3}\right)^{10-r}\left(-\frac{2}{x^{2}}\right)^{r}\)
    So, \(rth\) term
    \(=T_{r}={ }^{10} C_{r-1}\left(\frac{x^{3}}{3}\right)^{11-r}\left(-\frac{2}{x^{2}}\right)^{r-1}\)
    Comparing the indices of \(x\) in \(x^{20}\) and
    in \(T_{r},\) we get \(\Rightarrow 33-3 r-2 r+2=20\)
    \(\Rightarrow 5 r=15\)
    \(\Rightarrow r=3\)
  • Question 11
    4 / -1

    Represent the complex number \(Z=-2-i 2 \sqrt{3}\) in the polar form.

    Solution

    Given complex number is \(Z=-2-i 2 \sqrt{3}\)

    \(r \cos \theta=-2, r \sin \theta=-2 \sqrt{3}\)

    By squaring and adding, we get,

    \(\mathrm{r}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4+12\)

    \(\therefore \mathrm{r}=4\)

    \(\Rightarrow \cos \theta=\frac{-2}{r}=\frac{-2}{4}=-\frac{1}{2}\) and \(\sin \theta=\frac{-2 \sqrt{3}}{r}=\frac{-2 \sqrt{3}}{4}=-\frac{\sqrt{3}}{2}\)

    Since it is in third quadrant \(\theta=-\pi+\frac{\pi}{3}=-\frac{2 \pi}{3}\)

    So, on comparing with \(z=r(\cos \theta+i \sin \theta)\), we can write as \(4\left(\cos \left(-\frac{2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)\right) i \cdot e .4\left(\cos \left(\frac{2 \pi}{3}\right)-i \sin \left(\frac{2 \pi}{3}\right)\right)\).

  • Question 12
    4 / -1

    The complex number \(\frac{(-\sqrt{3}+3 i)(1-i)}{(3+\sqrt{3} i)(i)(\sqrt{3}+\sqrt{3} i)}\) when represented in the Argand diagram is:

    Solution

    Let, \(z=\frac{(-\sqrt{3}+3 i)(1-i)}{(3 i-\sqrt{3}) \sqrt{3}(1+i)}\)

    \(=\frac{1}{\sqrt{3}}\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)=-\frac{i}{\sqrt{3}}\)

    The complex number \(z\) is represented on \(y\) -axis (imaginary axis)

    Meaning of Argand Plane:

    Let \(z = a + ib\) be any complex number. If this complex number is represented geometrically by a point \(P\), then the angle made by the line \(OP\) with the real axis is known as argument or amplitude of \(z\) and is expressed as:

  • Question 13
    4 / -1

    The image of the point \(P(1,3,4)\) in the plane \(2 x-y+z=0\) is:

    Solution

    Let image of the point \(P(1,3,4)\) is \(Q\) in the given plane.

    The equation of the line through \(P\) and normal to the given plane is 

    \(\frac{(x-1) }{ 2}=\frac{(y-3) }{-1}=\frac{(z-4) }{ 1}=r\) (say)

    Since the line passes through Q. 

    So, let the coordinate of \(Q\) are \((2 r+1,-r\) \(+3, r+4)\).

    Now, the coordinate of the mid-point of \(P Q\) is \((r+1,-\frac{r }{ 2}+3, \frac{r }{ 2}+4)\).

    Now, this point lies in the given plane.

    \(2(r+1)-(-\frac{r }{ 2}+3)+(\frac{r }{ 2}+4)+3=0 \)

    \(\Rightarrow 2 r+2+\frac{r}{ 2}-3+\frac{r }{ 2}+4+3=0 \)

    \(\Rightarrow 3 r+6=0 \)

    \(\Rightarrow r=-2\)

    So, the coordinate of \(Q\) is \((2 r+1,-r+3, r+4)=(-4+1,2+3,-2+4)\) \(=(-3,5,2)\).

  • Question 14
    4 / -1

    Find the equation of a circle touching both the x-axis and y-axis and has centre at (-2, -2).

    Solution

    As we know, Standard equation of a circle,

    \((x-h)^{2}+(y-k)^{2}=R^{2}\)

    Where the center is \((h, k)\) and radius is \(R\).

    The distance between a point on a circle and the center is the radius of the circle.

    Distance between 2 points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is:

    \(D=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}\)

    Perpendicular distance of a point \(\left(x_{1}, y_{1}\right)\) from the line \(a x+b y+c=0\),

    \(D=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|\)

    Given, The circle touches the x and y-axis, i.e., the x and y-axis are tangent to the circle.

                       

    Equation of the \(x\)-axis is \(y=0\).

    Radius is perpendicular distance of centre \(\left(-2,-2\right)\) from the tangent \(\left(y=0\right)\)

    Radius \( r=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \)

    \(\Rightarrow r=\left|\frac{0 \times(-2)+1 \times(-2)+0}{\sqrt{0^{2}+1^{2}}}\right| \)

    \(\Rightarrow r=|-2|=2\)

    Equation of circle having centre \(\left(-2,-2\right)\) and radius \(r=2\) is:

    \(\left(x-h\right)^{2}+(y-k)^{2}=R^{2} \)

    \(\Rightarrow(x-(-2)^{2})+\left(y-(-2)\right)^{2}=2^{2} \)

    \(\Rightarrow x^{2}+y^{2}+4 x+4 y+8=4 \)

    \(\Rightarrow x^{2}+y^{2}+4 x+4 y+4=0\)

  • Question 15
    4 / -1

    A straight line through \(P(1,2)\) is such that its intercept between the axes is bisected at \(P\). Its equation is:

    Solution

    \(P(1,2)\) is mid point of \(A B,\)

    Therefore according to figure

    Coordinate of \(A\) and \(B\) are \((a,0)\) and \((0,b)\) respectively.

    \(\therefore 1=\frac{0+a}{2},2=\frac{0+b}{2}\)

    \(\Rightarrow a=2,b=4\)

    \(\Rightarrow a=2, b=4\)

    \(\Rightarrow A(2,0), B(0,4)\rightarrow\{A(2,0)=A(x_1,y_1), B(0,4)=B(x_2,y_2)\)

    Now, Equation of line \(AB\) is

    \(y-y_1=m×(x-x_1)\)

    Where, \(m=\frac{4-0}{0-2}=-\frac{4}{2}\{{m=\frac{y_2-y_1}{x_2-x_1}}\}\)

    \(\Rightarrow y-0=-\frac{4}{2}(x-2)\)

    \(\Rightarrow 2x+y=4 \)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now