Self Studies

Mathematics Test-6

Result Self Studies

Mathematics Test-6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    The solution of differential equation \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x\) will be:

    Solution

    Given equation is:

    \(x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x\)

    After reducing, it becomes,

    \(D(D-1) y-D y+y=z \Rightarrow\left(D^{2}-2 D-1\right) y=z\)

    Now the auxiliary equation is \((D-1)^{2}\)

    \(D=1,1\) [roots are real and equal]

    \(\therefore\) Complimentary function is \(\left(C_{1}+C_{2} z\right) e^{\mathrm{z}}\)

    Particular integral will be:

    \(P . I .=\frac{1}{(D-1)^{2}} z=(1-D)^{-2} z=\left(1+2 D+3 D^{2}+\ldots\right) z\)

    P.I. \(=z+2\)

    Now complete solution will be:

    \(y=C . F+P . I=\left(C_{1}+C_{2} z\right) e^{z}+z+2\)

    Substituting, \(z=\log x\)

    \(y=\left(C_{1}+C_{2} \log x\right) x+\log x+2\)

  • Question 2
    4 / -1

    The area bounded by the line y = x, x-axis and ordinates x = -1 and x = 2 is:

    Solution

    Let y = f(x) = x be the given equation.

    \(\therefore \int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int \mathrm{x} \mathrm{dx}=\frac{\mathrm{x}^{2}}{2}+\mathrm{C}\)

    The curve (line) y = x is above the x-axis for x > 0, and below the x-axis for x < 0. Using the above concept for the area of a curve, we can say that the required area is:

    \(I=\left|\int_{-1}^{0} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right|+\left|\int_{0}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right|\)

    \(=\left|\left[\frac{\mathrm{x}^{2}}{2}\right]_{-1}^{0}\right|+\left|\left[\frac{\mathrm{x}^{2}}{2}\right]_{0}^{2}\right|\)

    \(=\left|0-\frac{1}{2}\right|+\left|\frac{4}{2}-0\right|\)

    \(=\frac{1}{2}+\frac{4}{2}\)

    \(=\frac{5}{2}\)

  • Question 3
    4 / -1

    Find two positive numbers x and y such that x + y = 60 and xy3 is maximum?

    Solution

    Given: There are two positive numbers x and y such that x + y = 60

    Here we have to determine the numbers x and y such that x + y = 60 and xy3 is maximum.

    ∵ x + y = 60

    ⇒ x = 60 - y

    Now by substituting x = 60 - y in the expression xy3 we get

    Let f(y) = (60 - y) × y3 = 60y3 - y4

    Now let's find f'(x)

    ⇒ f'(y) = 180y2 - 4y3

    Now let's find the roots of the equation f'(y) = 0

    ⇒ 180y2 - 4y3 = 0

    ⇒ y = 0 or 45

    By neglecting y = 0 ∵ we need to maximize f(y)

    So, y = 45

    Now let's find out f''(y) i.e\(\frac{d^{2}(f(y))}{d y^{2}}\)

    ⇒ f''(y) = 360y - 12y2

    Now evaluate the value of f''(y) at y = 45

    ⇒ f''(45) = (360 × 45) - (12 × 452) = - 8100 < 0

    As we know that according to second derivative test if f''(c) < 0 then x = c is a point of maxima

    So, y = 45 is a point of maxima for f(y)

    So, when y = 45 then x = 60 - y = 15

    Therefore, the required numbers are 15 and 45.

  • Question 4
    4 / -1

    The value of determinant \(\left|\begin{array}{ccc}b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c\end{array}\right|\) is equal to:

    Solution

    As we know that, if each term of any row or of any column is sum of two quantities, then the determinant can be expressed as the sum of the two determinants of same order.

    \(\Rightarrow\left|\begin{array}{lll}b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c\end{array}\right|=\left|\begin{array}{lll}b & a+b & a \\ c & b+c & b \\ a & c+a & c\end{array}\right|+\left|\begin{array}{ccc}c & a+b & a \\ a & b+c & b \\ b & c+a & c\end{array}\right|\) .....(i)

    Now, first let's solve\(\left|\begin{array}{lll}b & a+b & a \\ c & b+c & b \\ a & c+a & c\end{array}\right|\)

    \(\Rightarrow\left|\begin{array}{lll}b & a+b & a \\ c & b+c & b \\ a & c+a & c\end{array}\right|=\left|\begin{array}{lll}b & a & a \\ c & b & b \\ a & c & c\end{array}\right|+\left|\begin{array}{ccc}b & b & a \\ c & c & b \\ a & a & c\end{array}\right|\)

    As we know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.

    \(\Rightarrow\left|\begin{array}{lll}b & a+b & a \\ c & b+c & b \\ a & c+a & c\end{array}\right|=0\) .....(ii)

    Now let's solve\(\left|\begin{array}{ccc}c & a+b & a \\ a & b+c & b \\ b & c+a & c\end{array}\right|\)

    \(\Rightarrow\left|\begin{array}{lll}c & a+b & a \\ a & b+c & b \\ b & c+a & c\end{array}\right|=\left|\begin{array}{ccc}c & a & a \\ a & b & b \\ b & c & c\end{array}\right|+\left|\begin{array}{ccc}c & b & a \\ a & c & b \\ b & a & c\end{array}\right|\)

    As we know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.

    \(\Rightarrow\left|\begin{array}{lll}c & a+b & a \\ a & b+c & b \\ b & c+a & c\end{array}\right|=\left|\begin{array}{ccc}c & b & a \\ a & c & b \\ b & a & c\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c\) .....(iii)

    Now, by substituting (ii) and (iii) in equation (i), we get

    \(\Rightarrow\left|\begin{array}{lll}b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c\end{array}\right|=a^{3}+b{ }^{3}+c^{3}-3 a b c\)

  • Question 5
    4 / -1

    If a median of 2, 3, x, 2x - 4, 5, 8 is 7 then the mode of given data is:

    (Assume that data present are in ascending order)

    Solution

    Median:

    Case 1: If the number of observations (n) is even

    Median \(=\frac{\text { Value of }\left(\frac{\mathrm{n}}{2}\right)^{\text {th }} \text { observation }+\text { Value of }\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }} \text { observation }}{2}\)

    Case 2: If the number of observations (n) is odd

    Median = Value of \(\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}\) observation

    Mode: The mode is the value that appears most frequently in a data set.

    Given data are

    2, 3, x, 2x - 4, 5, 8

    Number of observations = 6 = even

    So,

    Median \(=\frac{1}{2}(x+2 x-4)\) .....(i)

    But according to question, Median is 7.

    \(\Rightarrow \frac{1}{2}(x+2 x-4)=7\)

    ⇒ 3x - 4 = 14

    ⇒ x = 6

    So, observations are

    2, 3, 6, 8, 5, 8

    Since, 8 comes two times.

    So, mode of observations is 8.

  • Question 6
    4 / -1

    Direction: There are four boxes A1, A2, A3, A4. Box Ai has i cards and on each card a number is printed, the number are from 1 to i. A selection of box Ai is \(\frac{i}{10}\) and then a card is drawn. Let Ei represents the event that a card with number i' is drawn.

    P(E1) is equal to:

    Solution

    Concept:

    • Probability of both A and B = P(A ∩ B)
    • If A and B are independent, then, P(A ∩ B) = P(A).P(B)
    • Probability of A or B = P(A ∪ B)
    • If A and B are disjoint, then, P(A ∪ B) = P(A) + P(B)

    Calculation:

    E1 represents the event that a card with the number 1 is drawn.

    And the card with the number 1 can be drawn from either of the four boxes

    A1, A2, A3, or A4

    Given, The probability of selection of box \(A_{i} = \frac{i}{10}\)

    Since, Total number of cards in the box Ai = i

    \(\Rightarrow\) The probability of drawing a card with the number 1 from \(A_{i}\)

    \(\Rightarrow \frac{1}{i}\)

    Let The probability of selecting box Ai and choosing card with number 1 = P(Ai ∩ E1)

    \(\Rightarrow P(A_{i} ∩ E_{1}) = \frac{i}{10} \times \frac{1}{i} = \frac{1}{10} = 0.1\)

    So, P(A1 ∩ E1) = P(A2 ∩ E1) = P(A3 ∩ E1) = P(A4 ∩ E1) = 0.1

    Now, P(E1) = P(A1 or A2 or A3 or A4)

    ⇒ P(E1) = P(A1 ∩ E1) + P(A2 ∩ E1) + P(A3 ∩ E1) + P(A4 ∩ E1)

    \(\Rightarrow P(E_{1}) = 0.1 + 0.1 + 0.1 + 0.1 = 0.4 = \frac{4}{10} = \frac{2}{5}\)

  • Question 7
    4 / -1

    The sum of the series 0.6 + 0.66 + 0.666 + … to n terms is:

    Solution

    Given:

    Series is 0.6 + 0.66 + 0.666 + … to n terms

    Formula:

    Sum of first \(n\) terms of G.P \(=\frac{a\left(r^{n}-1\right)}{(r-1)}, r \neq 1\)

    Calculation:

    0.6 + 0.66 + 0.666 + ….....+ n terms

    ⇒ 0.6 (1+ 1.1 + 1.11 + ...........+ n terms)

    \(\Rightarrow 0.6\left(1+\frac{11}{10}+\frac{111}{100}+\ldots n\right.\) terms \()\)

    \(\Rightarrow 0.6\left(\frac{9}{9}+\frac{99}{90}+\frac{999}{900}+\ldots n\right.\) terms \()\)

    \(\Rightarrow \frac{0.6}{9}\left((10-1)+\frac{100-1}{10}+\frac{1000-1}{100}+\ldots n\right.\) terms \()\)

    \(\Rightarrow \frac{6}{90}\left((10-1)+\left(10-\frac{1}{10}\right)+\left(10-\frac{1}{100}\right)+\ldots n\right.\) terms \()\)

    \(\Rightarrow \frac{1}{15}\left((10+10+10+\ldots)-\left(1+\frac{1}{10}+\frac{1}{100}+\ldots\right)\right)\)

    \(\Rightarrow \frac{1}{15}\left(10 n-\left(\frac{1\left(1-\left(\frac{1}{10}\right)^{n}\right)}{1-\frac{1}{10}}\right)\right)\)

    \(\Rightarrow \frac{1}{15}\left(10 n-\frac{10}{9}\left(1-\left(\frac{1}{10}\right)^{n}\right)\right)\)

    \(\therefore \frac{1}{15}\left(10 n-\frac{10}{9}+\frac{1}{9 \times 10^{n-1}}\right)\)

  • Question 8
    4 / -1

    Find the equation of the hyperbola whose foci are \((0, \pm \sqrt{10})\) and passing through the point \((2,3)\).

    Solution

    The hyperbola taking \(Y\)-axis as reference is of the form \(\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1\) has:

    • Centre is given by: (0, 0)
    • Vertices are given by: (0, ±a)
    • Foci are given by: (0, ± c)

    Given:

    Foci \(=(0, \pm \sqrt{10})\)

    Point on the hyperbola is \((2,3)\).

    Calculation:

    Foci \(=(0, \pm \sqrt{10})\)

    so, ae \(=\sqrt{10}\)

    We know that, \(b^{2}=a^{2} e^{2}-a^{2}\)

    \(\Rightarrow b^{2}=(\sqrt{10})^{2}-a^{2}\)

    \(\Rightarrow b^{2}=10-a^{2}\)

    Substituting above in the equation of hyperbola,

    \(\Rightarrow \frac{y^{2}}{a^{2}}-\frac{x^{2}}{10-a^{2}}=1\)

    ⇒ (2, 3) points satisfy the above equation

    \(\Rightarrow \frac{3^{2}}{a^{2}}-\frac{2^{2}}{10-a^{2}}=1\)

    \(\Rightarrow a^{4}-23 a^{2}+90=0\)

    \(\Rightarrow\left(a^{2}-5\right)\left(b^{2}-18\right)=0\)

    \(\Rightarrow a^{2}=5,18\)

    From equation (i)

    b2 = 10 - 5 = 5

    Again b2 = 10 - 18 = - 8 (Not possible)

    The required equation of hyperbola is:

    \(\Rightarrow \frac{y^{2}}{5}-\frac{x^{2}}{5}=1\)

    \(\Rightarrow {y}^{2}-{x}^{2}=5\)

  • Question 9
    4 / -1

    Let \(A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 5 & 2 & 0 \\ -1 & 6 & 1\end{array}\right]\), then the adjoint of \(A\) is:

    Solution

    Let A = [aij] be a square matrix.

    Steps for obtaining adjoint of the matrix

    1. We need to calculate cofactors of all elements

    ⇒ Cij or Aij = (−1)i+j Mij

    Here, Mij = Minor of matrix A

    2. Transpose of cofactor is called adjoint of the matrix

    ⇒ Adj (A) = CT

    Calculation:

    The adjoint of matrix A is the transpose of the cofactor matrix of A.

    Cofactor of \(1=A_{11}=\left|\begin{array}{ll}2 & 0 \\ 6 & 1\end{array}\right|=2\)

    Cofactor of \(0=A_{12}=-\left|\begin{array}{cc}5 & 0 \\ -1 & 1\end{array}\right|=-5\)

    Cofactor of \(0=A_{13}=\left|\begin{array}{cc}5 & 2 \\ -1 & 6\end{array}\right|=32\)

    Cofactor of \(5=A_{21}=-\left|\begin{array}{ll}0 & 0 \\ 6 & 1\end{array}\right|=0\)

    Cofactor of \(2=A_{22}=\left|\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right|=1\)

    Cofactor of \(0=A_{23}=\left|\begin{array}{cc}1 & 0 \\ -1 & 6\end{array}\right|=-6\)

    Cofactor of \(-1=A_{31}=\left|\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right|=0\)

    Cofactor of \(6=A_{32}=-\left|\begin{array}{ll}1 & 0 \\ 5 & 0\end{array}\right|=0\)

    Cofactor of \(1=A_{33}=\left|\begin{array}{ll}1 & 0 \\ 5 & 2\end{array}\right|=2\)

    \(\therefore\) Cofactor matrix \(=\left[\begin{array}{ccc}2 & -5 & 32 \\ 0 & 1 & -6 \\ 0 & 0 & 2\end{array}\right]\)

    \(\operatorname{Adj}(A)=\left[\begin{array}{ccc}2 & 0 & 0 \\ -5 & 1 & 0 \\ 32 & -6 & 2\end{array}\right]\)

  • Question 10
    4 / -1

    If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in A. P., then the value of n is:

    Solution

    Given:

    Expansion is \((1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}+\frac{n(n-1)}{2 !} x^{2}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots \ldots \ldots\)

    Concept:

    When three terms ‘a’, ‘b’ and ‘c’ are in AP, then means: 2b = a + c

    \((1+x)^{n}={ }^{n} C_{0} x^{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+\ldots{ }^{n} C_{2} x^{n}\)

    Calculation:

    We have \((1+\mathrm{x})^{\mathrm{n}}=1+\mathrm{nx}+\frac{n(n-1)}{2 !} x^{2}+\frac{n(n-1)(n-2)}{3 !} x^{3}+\ldots \ldots \ldots\)

    Here, Coefficient of 2nd term (a) = nx,

    Coefficient of 3rd term (b) \(=\frac{n(n-1)}{2 !}\)

    Coefficient of 4 th term \((c)=\frac{n(n-1)(n-2)}{3 !}\)

    Now, According to the concept used

    \(\Rightarrow(n-1)=1+\frac{(n-1)(n-2)}{6}\)

    \(\Rightarrow 6(n-1)-6=(n-1)(n-2)\)

    \(\Rightarrow 6 n-6-6=n^{2}-3 n+2\)

    \(\Rightarrow n^{2}-9 n+14=0 \)

    \(\Rightarrow(n-2)(n-7)=0\)

    \(n=2\) is invalid as \((1+x)^{2}\) doesn't have \(4^{\text {th }}\) term in it.

    \(\therefore\) The value of \({n}\) is 7.

  • Question 11
    4 / -1

    If C (n, r) : C (n, r + 1) = 1 : 2 and C (n, r + 1) : C (n, r + 2) = 2 : 3. Find the value of r.

    Solution

    Formula:

    \(C(n, r)=\frac{n !}{r ! \times(n-r) !}\), where \(r \leq n\)

    Given: C (n, r) : C (n, r + 1) = 1 : 2 and C (n, r + 1) : C (n, r + 2) = 2 : 3

    \(\Rightarrow \frac{C(n, r)}{C(n, r+1)}=\frac{\frac{n !}{r ! \times(n-r) !}}{\frac{n !}{(r+1) ! \times(n-r-1) !}}=\frac{1}{2}\)

    ⇒ 3r + 2 = n .....(i)

    Similarly,

    \(\Rightarrow \frac{C(n, r+1)}{C(n, r+2)}=\frac{\frac{n !}{(r+1) ! \times(n-r-1) !}}{\frac{n !}{(r+2) ! \times(n-r-2) !}}=\frac{2}{3}\)

    ⇒ 5r + 8 = 2n .....(ii)

    By, solving equation (i) and (ii), we get

    ⇒ 5r + 8 = 2 × (3r + 2)

    ⇒ r = 4

  • Question 12
    4 / -1

    Solve for \(x: \frac{x}{2 x+1} \geq \frac{1}{4}\).

    Solution

    It is given that \(\frac{\mathrm{x}}{2 \mathrm{x}+1} \geq \frac{1}{4}\). We have the following two cases:

    Case 1: \(2 x+1>0 \Rightarrow x>-\frac{1}{2}\).

    Multiplying both sides of \(\frac{x}{2 x+1} \geq \frac{1}{4}\) by \(4(2 x+1)\), gives us:

    = 4x ≥ 2x + 1

    Subtracting 2x from both sides, we get:

    = 2x ≥ 1

    Dividing both sides by 2, we get:

    \(\Rightarrow \mathrm{X} \geq \frac{1}{2}\)

    Combining this with our assumption 2x + 1 > 0, we get:

    \(\mathrm{X}>-\frac{1}{2}\) and \(\mathrm{X} \geq \frac{1}{2}\)

    \(\Rightarrow \mathrm{X} \geq \frac{1}{2}\)

    Case 2: \(2 x+1<0 \Rightarrow x<-\frac{1}{2}\).

    Multiplying both sides of \(\frac{x}{2 x+1} \geq \frac{1}{4}\) by \(4(2 x+1)\) (which is -ve in this case), will give us:

    = 4x ≤ 2x + 1

    Subtracting 2x from both sides, we get:

    = 2x ≤ 1

    \(\Rightarrow \mathrm{x} \leq \frac{1}{2}\)

    Combining this with our assumption, we get:

    \(\mathrm{x}<-\frac{1}{2}\) and \(\mathrm{x} \leq \frac{1}{2}\)

    \(\Rightarrow \mathrm{x}<-\frac{1}{2}\)

    Considering both the cases together, we can say that \(\mathrm{x} \geq \frac{1}{2}\) or \(\mathrm{x}<-\frac{1}{2}\).

    \(\Rightarrow \mathrm{x} \in\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)\)

  • Question 13
    4 / -1

    Acute angle between the line \(\frac{\mathrm{x}-5}{2}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}+4}{1}\) and the plane \(3 \mathrm{x}-4 \mathrm{y}-\mathrm{z}+5=0\) is:

    Solution

    Given, the line \(\frac{\mathrm{x}-5}{2}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}+4}{1}\) and the plane

    The angle between the line \(\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}\) to the normal to the plane \(\mathrm{Ax}+\mathrm{By}+\) \(\mathrm{Cz}=\mathrm{D}\) is given by,

    \(\sin \theta=\left|\frac{\mathrm{Aa}+\mathrm{Bb}+\mathrm{Cc}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \cdot \sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|\)

    So, angle between the line \(\frac{\mathrm{x}-5}{2}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}+4}{1}\) and the plane \(3 \mathrm{x}-4 \mathrm{y}-\mathrm{z}+5=0\) is

    ⇒ Here a = 2, b = -1, c = 1 and A = 3, B = -4 and C = -1

    \(\sin \theta=\left|\frac{(2)(3)+(-1)(-4)+(1)(-1)}{\sqrt{2^{2}+(-1)^{2}+1^{2}} \cdot \sqrt{3^{2}+(-4)^{2}+(-1)^{2}}}\right|\)

    \(\sin \theta=\frac{9}{\sqrt{156}}\)

    \(\theta=\sin ^{-1}\left(\frac{9}{2 \sqrt{39}}\right)\)

    So, Acute angle between the line \(\frac{\mathrm{x}-5}{2}=\frac{\mathrm{y}+1}{-1}=\frac{\mathrm{z}+4}{1}\) and the plane \(3 x-4 y-z+5=0\) is \(\theta=\sin ^{-1}\left(\frac{9}{2 \sqrt{39}}\right)\)

  • Question 14
    4 / -1

    The maximum value of the object function Z = 5x + 10y subject to the constraints x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0 is:

    Solution

    The intercept form of the line is given by:\(\frac{x}{a}+\frac{y}{b}=1\)

    Where a is the x-intercept and b is the y-intercept

    Calculation:

    Maximize Z = 5x + 10y

    Subject to, x + 2y ≤ 120, x + y ≥ 60, x - 2y ≥ 0, x ≥ 0, y ≥ 0

    Converting the given in equations into equations

    x + 2y = 120, x + y = 60, x - 2y = 0

    \(x+2 y=120 \Leftrightarrow \frac{x}{120}+\frac{y}{60}=1\)

    \(x+y=60 \Leftrightarrow \frac{x}{60}+\frac{y}{60}=1\)

    \(x-2 y=0 \Leftrightarrow 2 y=x\) (Passing through origin)

    The corner points of the feasible region are A(60, 30), B(40, 20),

    C(60,0) and D(120, 0)The values of Z at these corner points are asfollows:

    Corner point z = 5x + 10y

    Corner points

    z = 5x + 10y

    A(60, 30)

    600

    B(40, 20)

    400

    C(60,0)

    300

    D(120, 0)

    600

    The maximum value of Z is 600 at all the points on the line segmentjoining (120, 0) and (60, 30).

  • Question 15
    4 / -1

    If f(x) = 2|x| and g(x) = [x] where [.] denotes greatest integer function then find the value of f o g \(\left(-\frac{17}{2}\right)\)?

    Solution

    Given: \(f(x) = 2^{|x|}\) and g(x) = [x] where [.] denotes greatest integer function

    Here, we have to find out the value of f o g \(\left(-\frac{ 3}{2}\right)\)

    \(\Rightarrow f o g \left(- \frac{17}{2}\right) = f( g\left(- \frac{17}{2}\right))\)

    \(\because g(x) = [x]\), So \(g \left(- \frac{17}{2}\right) = \left[- \frac{17}{2}\right] = -9\)

    \(\Rightarrow f o g \left(- \frac{17}{2}\right) = f(- 9)\)

    \(\because f(x) = 2^{|x|}\) So, \(f(- 9) = 2^{|- 9|} = 29 = 512\)

    So, f o g \(\left(- \frac{17}{2}\right) = 512\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now