It is given that \(\frac{\mathrm{x}}{2 \mathrm{x}+1} \geq \frac{1}{4}\). We have the following two cases:
Case 1: \(2 x+1>0 \Rightarrow x>-\frac{1}{2}\).
Multiplying both sides of \(\frac{x}{2 x+1} \geq \frac{1}{4}\) by \(4(2 x+1)\), gives us:
= 4x ≥ 2x + 1
Subtracting 2x from both sides, we get:
= 2x ≥ 1
Dividing both sides by 2, we get:
\(\Rightarrow \mathrm{X} \geq \frac{1}{2}\)
Combining this with our assumption 2x + 1 > 0, we get:
\(\mathrm{X}>-\frac{1}{2}\) and \(\mathrm{X} \geq \frac{1}{2}\)
\(\Rightarrow \mathrm{X} \geq \frac{1}{2}\)
Case 2: \(2 x+1<0 \Rightarrow x<-\frac{1}{2}\).
Multiplying both sides of \(\frac{x}{2 x+1} \geq \frac{1}{4}\) by \(4(2 x+1)\) (which is -ve in this case), will give us:
= 4x ≤ 2x + 1
Subtracting 2x from both sides, we get:
= 2x ≤ 1
\(\Rightarrow \mathrm{x} \leq \frac{1}{2}\)
Combining this with our assumption, we get:
\(\mathrm{x}<-\frac{1}{2}\) and \(\mathrm{x} \leq \frac{1}{2}\)
\(\Rightarrow \mathrm{x}<-\frac{1}{2}\)
Considering both the cases together, we can say that \(\mathrm{x} \geq \frac{1}{2}\) or \(\mathrm{x}<-\frac{1}{2}\).
\(\Rightarrow \mathrm{x} \in\left(-\infty,-\frac{1}{2}\right) \cup\left(\frac{1}{2}, \infty\right)\)