Self Studies

Mathematics Test-8

Result Self Studies

Mathematics Test-8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(\underset{{x \rightarrow 1}}{\lim} \frac{x^{4}-1}{x-1}=\underset{{x \rightarrow k}}{\lim} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}\), where \(k \neq 0\), then what is the value of \(k\)?

    Solution

    \(\underset{{x \rightarrow 1}}{\lim} \frac{x^{4}-1}{x-1}=\underset{{x \rightarrow k}}{\lim} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}\)

    LHS =\(\underset{{x \rightarrow 1}}{\lim} \frac{x^{4}-1}{x-1}\)

    \(=\underset{{x \rightarrow 1}}{\lim} \frac{\left(x^{2}-1\right)\left(x^{2}+1\right)}{x-1}\)

    \(=\underset{{x \rightarrow 1}}{\lim} \frac{(x-1)(x+1)\left(x^{2}+1\right)}{x-1}\)

    \(=\underset{{x \rightarrow 1}}{\lim} (x+1)\left(x^{2}+1\right)\)

    \(=(1+1)(1+1)\)

    \(=4\)

    RHS \(=\underset{{x \rightarrow k}}{\lim} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}\)

    Here we have \(\frac{0}{0}\) form so apply L-Hospitals rule

    \(\underset{x \rightarrow k}{\lim} \frac{x^{3}-k^{3}}{x^{2}-k^{2}}=\underset{x \rightarrow k}{\lim} \frac{3 x^{2}}{2 x}\)

    \(=\underset{x \rightarrow k}{\lim} \frac{3 x}{2}\)

    \(=\frac{3 k}{2}\)

    \(\therefore 4=\frac{3 k}{2}\)

    \(\Rightarrow 3 k=8\)

    \(\Rightarrow k=\frac{8}{3}\)

  • Question 2
    4 / -1

    A student appears for tests I, II and III. The student is considered successful if the passes in tests I, II or I, III or all the three. The probabilities of the student passing in test I, II and III are m, n and \(\frac{1}{2}\) respectively. If the probability of the student to be successful is \(\frac{1}{2}\), then which one of the following is correct?

    Solution

    Given:

    The probabilities of the student passing in test I, II and III are m, n and \(\frac{1}{2}\)

    Let A, B and C be the events that the student is successful in tests I, II and III, respectively.

    \(\therefore P(A) = m, P(B) = n\) and \(P(C) = \frac{1}{2}\)

    Let the probability of student is successful = P(S)

    \(\therefore P(S) = \frac{1}{2}\)

    P(S) = P(A ∩ B ∩ C') ∪ P(A ∩ B' ∩ C) ∪ P(A ∩ B ∩ C)

    Here A,B and C are two independent events

    P(S) = P(A)⋅P(B)⋅P(C') + P(A)⋅P(B')⋅P(C) + P(A)⋅P(B)⋅P(C)

    \(\Rightarrow \frac{1}{2}=\mathrm{m} \times \mathrm{n} \times\left(1-\frac{1}{2}\right)+\mathrm{m} \times(1-\mathrm{n}) \times \frac{1}{2}+\mathrm{m} \times \mathrm{n} \times \frac{1}{2}\)

    ⇒ 1 = mn + m (1 − n) + mn

    ⇒ 2mn + m (1 − n) = 1

    ⇒ m (2n + 1 − n) = 1

    ⇒ m (n + 1) = 1

  • Question 3
    4 / -1

    Find the area bounded by the curve \(y=\sqrt{x}\) and the line \(2 y=x\).

    Solution

    Given curve are \(y=\sqrt{x}\) and \(2 y=x\)

    \(\Rightarrow y=\sqrt{x}=\frac{x}{2}\)

    Squaring both sides, we get

    \(\Rightarrow x=\left(\frac{x^{2}}{4}\right)\)

    \(\Rightarrow x^{2}-4 x=0\)

    \(\Rightarrow x(x-4)=0\)

    \(\therefore x=0\) and \(x=4\)

    Now, \(y=\sqrt{x}\)

    If \(x=0\) than \(y=0\)

    If \(x=4\) then \(y=2\)

    The area in the given case can be evaluated by horizontal component, thus the area is given by:

    \(A=\int_{0}^{2}\left(2 y-y^{2}\right) d y\)

    \(=2\left[\frac{y^{2}}{2}\right]_{0}^{2}-\left[\frac{y^{3}}{3}\right]_{0}^{2}\)

    \(=4-\frac{8}{3}\)

    \(=\frac{4}{3}\)

    Therefore, the required area is \(\frac{4}{3}\) units.

  • Question 4
    4 / -1

    If \(\frac{\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}}{\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}}\) be the harmonic mean of \(\mathrm{a}\) and \(\mathrm{b}\) then value of \(\mathrm{n}\) is:

    Solution

    Given: \(\frac{\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}}{\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}}\) be the harmonic mean of \(\mathrm{a}\) and \(\mathrm{b}\)

    To Find: n

    As we know,

    The harmonic mean between two numbers a and b is given by:

    \(\mathrm{HM}=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}}{\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}}\)

    \(\Rightarrow 2 \mathrm{ab} \times\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}\right)=(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}\right)\)

    \(\Rightarrow 2 \mathrm{a}^{\mathrm{n}+1} \mathrm{~b}+2 \mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}+1}=\mathrm{a}^{\mathrm{n}+2}+\mathrm{b}^{\mathrm{n}+2}+\mathrm{a}^{\mathrm{n}+1} \mathrm{~b}+2 \mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}+1}\)

    \(\Rightarrow \mathrm{a}^{\mathrm{n}+2}+\mathrm{b}^{\mathrm{n}+2}-\mathrm{a}^{\mathrm{n}+1} \mathrm{~b}-\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}+1}=0\)

    \(\Rightarrow \mathrm{a}^{\mathrm{n}+1}(\mathrm{a}-\mathrm{b})-\mathrm{b}^{\mathrm{n}+1}(\mathrm{a}-\mathrm{b})=0\)

    \(\Rightarrow\left(\mathrm{a}^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}\right)(\mathrm{a}-\mathrm{b})=0\)

    \(\therefore\left(\mathrm{a}^{\mathrm{n}+1}-\mathrm{b}^{\mathrm{n}+1}\right)=0\)

    This is possible only when n + 1 = 0

    Therefore, n = -1

  • Question 5
    4 / -1

    If \(f(x)=\sin ^{-1}\left[\frac{2^{x+1}}{1+4^{x}}\right]\), then \(f^{\prime}(0)=\)

    Solution

    Given: \(f(x)=\sin ^{-1}\left[\frac{2^{x+1}}{1+4^{x}}\right]\)

    \(f(x)=\sin ^{-1}\left[\frac{2 \cdot 2^{x}}{1+\left(2^{x}\right)^{2}}\right]\)

    Let, 2x = tanθ

    \(f(x) =\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)\)

    \(=\sin ^{-1}\left(\frac{2 \sin \theta}{\cos \theta} \times \frac{\cos ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta}\right)\)

    \(=\sin ^{-1}(2 \sin \theta \cos \theta)\)

    \(=\sin ^{-1}(\sin 2 \theta)=2\)

    f(x) = 2tan-1(2x)

    Differentiating both side w.r.t. \(\mathrm{x}\)

    \(f^{\prime}(x)=\frac{2}{1+4^{x}}\left(2^{x} \log 2\right)\)

    \(f^{\prime}(0)=\frac{2}{1+1}(\log 2)\)

    \(f^{\prime}(0)=\log 2\)

  • Question 6
    4 / -1

    A group of 80 candidates have their average height 148.5 cm with coefficient of variation 2.5%. What is the standard deviation of their height?

    Solution

    Given: A group of 80 candidates have their average height 148.5 cm with coefficient of variation 2.5%.

    Here, we have to find the standard deviation of their height

    Let the standard deviation be x.

    Formula: Coefficient of variation \(=\frac{\text { Standard deviaiton }}{\text { Mean }} \times 100\)

    \(\Rightarrow\) Coefficient of variation \(=\frac{x}{148.5} \times 100=2.5\)

    \(\Rightarrow x=\frac{2.5 \times 148.5}{100}\)

    \(\Rightarrow {x}=3.7125\) cm

  • Question 7
    4 / -1

    Find the general solution of the equation 4 sin 3x = 2?

    Solution

    Given: \(4 \sin 3 x=2\)

    \(\Rightarrow \sin 3 x=\frac{1}{2}\)

    As we know that, \(\sin (\frac{\pi}{6})=\frac{1}{2}\)

    \(\Rightarrow \sin 3 x=\sin (\frac{\pi}{6})\)

    As we know that, if \(\sin \theta=\sin \alpha\) then

    \(\theta=n \pi+(-1)^{n} a, a \in[-\frac{\pi}{2}, \frac{\pi}{2}], n \in Z\)

    \(\Rightarrow 3 x=n \pi+(-1)^{n} \times(\frac{\pi}{6}), \text { where } n \in Z\)

    \(\Rightarrow x=n \times(\frac{\pi}{3})+(-1)^{n} \times(\frac{\pi}{18}), \text { where } n \in Z\)

  • Question 8
    4 / -1

    Evaluate: \(\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)\)

    Solution

    Here we have to find the value of \(\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)\)

    Let f(x) = sec x - tan x, now we can re-write f(x) as:

    \(\Rightarrow f(x)=\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)=\frac{1-\sin x}{\cos x}\)

    Now by multiplying numerator and denominator of f(x) by cos x, we get

    \(\Rightarrow f(x)=\frac{(1-\sin x) \cdot \cos x}{\cos ^{2} x}=\frac{(1-\sin x) \cdot \cos x}{1-\sin ^{2} x}=\frac{\cos x}{1+\sin x}\)

    \(\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{1+\sin x}\right)\)

    As we know that, \(\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}\), provided \(\lim _{x \rightarrow a} g(x) \neq 0\)

    \(\Rightarrow \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{1+\sin x}\right)=\frac{\lim _{x \rightarrow \frac{\pi}{2}} \cos x}{\lim _{x \rightarrow \frac{\pi}{2}}(1+\sin x)}=0\)

  • Question 9
    4 / -1

    For what value of α, the system of equation: x + y + z = 0, x – y + z = 0 and 2x + 3y + αz = 0 has infinitely many solutions.

    Solution

    Given: x + y + z = 0, x – y + z = 0 and 2x + 3y + αz = 0

    As we know that,

    \(\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|\)

    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 3 & \alpha\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 3 & \alpha\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & \alpha\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 0 \\ 2 & 3 & 0\end{array}\right|\)

    As we know that, for the given system of equation to have infinitely many solution according to cramer’s rule: Δ = 0 and Δ1 = Δ2 = Δ3 = 0.

    We can see that, Δ1 = Δ2 = Δ3 = 0 ∵ they contain one column with all entries 0.

    So, we need to make Δ = 0.

    ⇒ Δ = - 2α + 4 = 0 ⇒ α = 2.

    So, for α = 2 the given system has infinitely many solutions.

  • Question 10
    4 / -1

    Find the radius of the circle, \(5 x^{2}+5 y^{2}-20 x-6 y+15=0\)

    Solution

    General form of the equation of a circle, \(x^{2}+y^{2}+2 g x+2 f y+c=0\)

    Centre is \((-\mathrm{g},-\mathrm{f})\) or \(\left(\frac{-\text { Coefficient of } \mathrm{x}}{2}, \frac{-\text { Coefficient of } \mathrm{y}}{2}\right)\), where \(\mathrm{g}, \mathrm{f}\) and \(\mathrm{c}\) are constant.

    Radius \(=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}\)

    Given equation of circle is, \(5 x^{2}+5 y^{2}-20 x-6 y+15=0\)

    \(\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-\frac{6}{5} \mathrm{y}+3=0\) .....(i)

    On compare equation (i) with standard equation of circle x2 + y2 + 2gx + 2fy + c = 0

    We get \(, g=-2, f=\frac{-3}{5}\) and \(c=3\)

    As we know that, radius of circle \(=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}\)

    \(\Rightarrow\) Radius \(=\sqrt{(-2)^{2}+\left(\frac{-3}{5}\right)^{2}-3}=\sqrt{4+\frac{9}{25}-3}\)

    \(\Rightarrow\) Radius \(=\frac{\sqrt{34}}{5}\) units

  • Question 11
    4 / -1

    Which region is described by the shade in the graph given below?

    Solution

    The line represents 2x + 3y = 3

    Writing it in intercept form, we get

    \(\frac{x}{\frac{3}{2}}+\frac{y}{1}=1\)

    So, x intercept is \(\frac{3}{2}\) units and y intercept is 1 unit.

    Consider any arbitrary point in the shaded region such that it does not lie on the line 2x + 3y = 3.

    Let us consider (4, 4):

    (4, 4) clearly does not lie on the line but it does lie in the shaded region.

    2(4) + 3(4) = 20 and 20 > 3

    Therefore in the shaded region 2x + 3y > 3

    Since the line on the graph is not dotted, therefore the shaded region includes

    2x + 3y = 3 or 2x + 3y > 3

    So, 2x + 3y ≥ 3

  • Question 12
    4 / -1

    What is the general solution of \(\left(1+e^{x}\right) y d y=e^{x} d x\)?

    Where \(\mathrm{c}\) is a constant of integration.

    Solution

    Consider the equation \(\left(1+e^{x}\right) y d y=e^{x} d x\)

    \(\Rightarrow y \mathrm{dy}=\frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}\)

    variables are seperated, Integrating w.r.to \(\mathrm{x}\), we get

    \(\Rightarrow \int y d y=\int \frac{e^{x}}{1+e^{x}} d x\)

    Let, 1 + ex = t

    ⇒ exdx = dt

    \(\Rightarrow \frac{\mathrm{y}^{2}}{2}=\int \frac{\mathrm{dt}}{\mathrm{t}}\)

    \(\Rightarrow \frac{\mathrm{y}^{2}}{2}=\log \mathrm{t}+\log \mathrm{c}\)

    \(\Rightarrow \frac{\mathrm{y}^{2}}{2}=\log c t\)

    \(\Rightarrow \mathrm{y}^{2}=2 \log c t\)

    \(\Rightarrow \mathrm{y}^{2}=\log \left[\mathrm{c}^{2} \mathrm{t}^{2}\right]\)

    \(\therefore \mathrm{y}^{2}=\ln \left[\mathrm{c}^{2}\left(\mathrm{e}^{\mathrm{x}}+1\right)^{2}\right]\)

  • Question 13
    4 / -1

    A merchant plans to sell two types of personal computers - a desktop model and a portable model, that will cost Rs. 25,000 and Rs. 40,000 respectively. He estimates that the total monthly demand of the computers will not exceed 250 units. Determine the number of units of each type of computer which the merchant should stock to get the maximum profit, if he does not want to invest more than Rs. 70 lakhs and his profit on the desktop model is Rs. 4,500 and on the portable model is Rs. 5,000.

    Solution

    Formulation of LPP:

    Let's say that the merchant stocks x units of desktop model and y units of portable model.

    The information given in the question is listed below:

    Model

    No. of Units

    Cost

    Profit

    Desktop

    x

    25,000

    4,500

    Portable

    y

    40,000

    5,000

    Total cost = 25,000x + 40,000y.

    Objective function is profit P = 4,500x + 5,000y.

    Constraints:

    Demand constraint:

    x + y ≤ 250 ... (1)

    Cost constraint:

    25,000x + 40,000y ≤ 70,00,000

    ⇒ 5x + 8y ≤ 1400 ... (2)

    Physical constraint:

    x, y ≥ 0 ... (3)

    Graph:

    Solving the lines in equation (1) and (2) simultaneously:

    Multiplying equation (1) by 5 and subtracting from (2), we get:

    3y = 150

    ⇒ y = 50

    Substituting this in equation (1), we get:

    x = 250 - 50 = 200

    ∴ The lines intersect at x = 200, y = 50.

    All the points and the feasible region are shown in the graph below:

    The values of the objective function P = 4,500x + 5,000y at each of the corner points of the feasible region (shaded) are listed below:

    x

    y

    P = 4,500x + 5,000y

    0

    0

    0

    0

    175

    8,75,000

    200

    50

    11,50,000

    250

    0

    11,25,000

    We observe that the maximum value of the profit (P) is for x = 200, y = 50.

    Therefore, the merchant needs to stock 200 desktop and 50 portable computers for maximum profit.

  • Question 14
    4 / -1

    If \(\mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}}\) where \(\mathrm{i}=\sqrt{-1}\), then what is the value of \(\mathrm{A} ?\)

    Solution

    Let \(A=x_{1}+i y_{1}\) and \(B=x_{2}+i y_{2}\)

    If \(A=B\) then \(x_{1}=x_{2}\) and \(y_{1}=y_{2}\)

    Given: \(\mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}} \times \frac{1+2 \mathrm{i}}{1+2 \mathrm{i}}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{4+10 \mathrm{i}+4 \mathrm{i}^{2}}{1-4 \mathrm{i}^{2}}\)

    We know i2 = -1

    \(\Rightarrow \mathrm{A}+\mathrm{i} \mathrm{B}=\frac{4+10 \mathrm{i}-4}{1+4}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{10 \mathrm{i}}{5}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=2 \mathrm{i}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=0+2 \mathrm{i}\)

    Comparing real and imaginary parts, we get,

    ⇒ A = 0

  • Question 15
    4 / -1

    Find the slope of the tangent to the curve \(x y^2-2 x=4\) at \(x=2\)

    Solution

    Given curve:

    \( x y^2-2 x=4\)

    \( \text { Put } x=2,\)

    \( 2 y^2-4=4 \)

    \( \Rightarrow 2 y^2=8 \)

    \( \therefore y= \pm 2\)

    Point on the curve is \((2,2)\) and \((2,-2)\)

    \(x y^2-2 x=4\)

    Differentiating with respect to \(x\), we get

    \( 2 x y \frac{d y}{d x}+y^2-2=0\)

    \( \Rightarrow 2 x y \frac{d y}{d x}=2-y^2\)

    \( \Rightarrow \frac{d y}{d x}=\frac{2-y^2}{2 x y}\)

    Then, the slope of the tangent to the given curve at \(x=2, y=2\) is given by

    \(\Rightarrow \frac{ dy }{ dx }=\frac{2- y ^2}{2 xy } \)

    \(\Rightarrow \frac{ dy }{ dx }=\frac{2-4}{8}=-\frac{2}{8}=-\frac{1}{4}\)

    Then, the slope of the tangent to the given curve at \(x=2, y=-2\) is given by

    \( \Rightarrow \frac{ dy }{ dx }=\frac{2- y ^2}{2 xy } \)

    \( \Rightarrow \frac{ dy }{ dx }=\frac{2-4}{-8}=\frac{2}{8}=\frac{1}{4}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now