Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    4 / -1

    If the lines \(x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0\) and \(5 x+\lambda y-8=0\) are concurrent, then the value of \(\lambda\) is:

  • Question 2
    4 / -1

    If \(\left(\mathrm{a}, \mathrm{a}^{2}\right)\) falls inside the angle made by the lines \(\mathrm{y}=\frac{\mathrm{x}}{2}, \mathrm{x}>0\) and \(\mathrm{y}=3 \mathrm{x}, \mathrm{x}>0,\) then a belongs to

  • Question 3
    4 / -1

    What is the degree of the differential equation \(\mathrm{y}=\mathrm{x}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{2}+\left(\frac{\mathrm{dx}}{\mathrm{dy}}\right) ?\)

  • Question 4
    4 / -1

    In a football championship, there were played 153 matches. Every team played one match with each other. The number of teams participating in the championship is:

  • Question 5
    4 / -1

    Evaluate: \(\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x^{3}}\)

  • Question 6
    4 / -1

    Let a function \(f: \mathrm{R} \rightarrow \mathrm{R}\) satisfy the equation \(f(\mathrm{x}+\mathrm{y})=f(\mathrm{x})+f(\mathrm{y})\) for all \(\mathrm{x}, \mathrm{y} .\) If the function \(f(\mathrm{x})\) is continuous at \(x=0,\) then

  • Question 7
    4 / -1

    The tangent to the curve \(\mathrm{y}=\mathrm{x}^{3}-6 \mathrm{x}^{2}+9 \mathrm{x}+4,0 \leq \mathrm{x} \leq 5\) has maximum slope at \(x\) which is equal to __________.

  • Question 8
    4 / -1

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1} ?\)

  • Question 9
    4 / -1

    The mean of a distribution is \(22\) and the standard deviation is \(10\). What is the value of variance coefficient?

  • Question 10
    4 / -1

    Equation of hyperbola whose latus rectum is 6 and eccentricity is 2:

  • Question 11
    4 / -1

    Find the conjugate of \(\left(i-i^{2}\right)^{3}\)

  • Question 12
    4 / -1

    If \(\cos ^{-1}\left(\frac{p}{a}\right)+\cos ^{-1}\left(\frac{q}{b}\right)=\alpha\), then \(\frac{p^{2}}{a^{2}}+k \cos \alpha+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha\) where \(k\) is equal to:

  • Question 13
    4 / -1

    If \(f(x)=\left\{\begin{array}{ll}\frac{\sin 3 x}{e^{2 x}-1}, & x \neq 0 \\ k-2, & x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=?\)

  • Question 14
    4 / -1

    If \(\overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}\) and \(\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\), then the vector form of the component of \(\overrightarrow{\mathrm{a}}\) along \(\overrightarrow{\mathrm{b}}\) is:

  • Question 15
    4 / -1

    Using principle of mathematical induction, prove that for all \(n \in N, \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}\) is a:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 15

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now