Kinetic Energy when body is moving with velocity \(10 \mathrm{~cm} / \mathrm{second}\)
Displacement from mean position \(x=4 \mathrm{~cm}\)
So, we can say
\(10=\omega \sqrt{\left(A^{2}-4^{2}\right)}...(1)\)
Also, when displacement is \(5 \mathrm{~cm}\), velocity is \(8 \mathrm{~cm} / \mathrm{second}\)
\(8=\omega \sqrt{\left(A^{2}-5^{2}\right)}...(2)\)
Dividing \((1)\) and \((2)\)
\(\frac{5}{4}=\frac{\omega \sqrt{A^{2}-4^{2}}}{\omega \sqrt{A^{2}-5^{2}}}\)
\(\Rightarrow \frac{5}{4}=\frac{\sqrt{A^{2}-4^{2}}}{\sqrt{A^{2}-5^{2}}}\)
\(\Rightarrow \frac{25}{16}=\frac{A^{2}-4^{2}}{A^{2}-5^{2}}\)
\(\Rightarrow 25 \mathrm{~A}^{2}-25 \times 5^{2}=16 \mathrm{~A}^{2}-16 \times 4^{2}\)
\(\Rightarrow 9 \mathrm{~A}^{2}=625-256=36\)
\(\Rightarrow \mathrm{A}^{2}=41...(3)\)
Putting \((3)\) in \((1)\) we get,
\(10=\omega \sqrt{\left(41-4^{2}\right)}\)
\(\Rightarrow 10=\omega \sqrt{(41-16)}\)
\(\Rightarrow 10=\omega \sqrt{(25)}\)
\(\Rightarrow 10=\omega 5\)
\(\Rightarrow \omega=0.5\)
\(\Rightarrow\frac{ 2 \pi}{T}=0.5\)
\(\Rightarrow T=2 \pi \times 0.5=\pi\)
\(\therefore\) The time period of this simple harmonic motion is \(\pi\).