Given:
\(\overrightarrow{\mathrm{E}}=(\hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \mathrm{N} / \mathrm{kg}\)
Force acting as unit mass \(\overrightarrow{\mathrm{F}}=\mathrm{m} \overrightarrow{\mathrm{E}}\)
\(=(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \mathrm{N}\)
The motion of unit mass along the line \(4 \mathrm{y}=3 \mathrm{x}+9\)
\(\mathrm{y}=\frac{3 \mathrm{x}+9}{4}\)
At \(x_{2}=1, \quad y_{2}=\frac{12}{4}=3\)
Let the point be \(A\).
At \(\mathrm{x}_{1}=0, \quad \mathrm{y}_{1}=\frac{9}{4}\)
So vector \(\vec{d}\) from \(A\) to \(B\)
\(\overrightarrow{\mathrm{d}} =\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\mathrm{i}}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\mathrm{j}} \)
\(=(1-0) \hat{\mathrm{i}}+\frac{(3-9)}{4} \hat{\mathrm{j}} \)
\(=\hat{\mathrm{i}}+\left(\frac{12-9}{4}\right) \hat{\mathrm{j}} \)
\(=\hat{\mathrm{i}}+\frac{3}{4} \hat{\mathrm{j}}\)
Now work done is moving unit mass a long given line is:
\(\mathrm{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{d}}\)
\(=(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \cdot\left(\hat{\mathrm{i}}+\frac{3}{4} \hat{\mathrm{j}}\right) \)
\(=3 \hat{\mathrm{i}} \times \hat{\mathrm{i}}-4 \hat{\mathrm{j}} \times \frac{3}{4} \hat{\mathrm{j}} \)
\(=3-3=0\)