\(\vec{A}\) and \(\vec{B}\) have equal magnitude so \(|\vec{A}|=|\vec{B}|\).
The magnitude of resultant of \(\vec{A}\) and \(\vec{B}\) is equal to the magnitude of either of them i.e., \(|\vec{A}+\vec{B}|=|\vec{A}|=|\vec{B}|\).
The magnitude of resultant of \(\vec{A}\) and \(\vec{B}\) is given by
\(|\vec{A}+\vec{B}|=\sqrt{|\vec{A}|^{2}+|\vec{B}|^{2}+2|\vec{A}||\vec{B}| \cos \theta}\)
Where \(\theta=\) Angle between \(\vec{A}\) and \(\vec{B}\)
This magnitude is equal to the magnitude of the either of them i.e.,\(|\vec{A}|=|\vec{A}+\vec{B}|\)
So, \(|\vec{A}|=\sqrt{|\vec{A}|^{2}+|\vec{B}|^{2}+2|\vec{A}||\vec{B}| \cos \theta}\)
Taking square in both the sides,
\(|\vec{A}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}+2|\vec{A}||\vec{B}| \cos \theta\)
Put \(|\vec{A}|=|\vec{B}|\)
And \(|\vec{A}|^{2}=|\vec{B}|^{2}\)
So,\(|\vec{A}|^{2}=|\vec{A}|^{2}+|\vec{A}|^{2}+2|\vec{A}||\vec{A}| \cos \theta\)
\(\Rightarrow 2|\vec{A}|^{2} \cos \theta+|\vec{A}|^{2}=0\)
\(\Rightarrow 2 \cos \theta=-1\)
\(\Rightarrow \cos \theta=\frac{-1}{2}\)
\(\Rightarrow \theta=\cos ^{-1}\left(\frac{-1}{2}\right)\)
\(\Rightarrow \theta=\frac{2 \pi}{3}\)
So, the required angle between \(\vec{A}\) and \(\vec{B}\) is \(\frac{2 \pi}{3}\).