For lens in air,
\(\frac{1}{f}=(1.5-1)\left[\frac{1}{R}-\frac{1}{(-R)}\right]\)
\(\frac{1}{f}=\frac{1}{2} \times \frac{2}{R}=\frac{1}{R}\)
\(R=f\)
For calculating the focal length of the lens kept on the surface of the pond, place on object at \(\approx\) its image should be at effective focal length of system:
For surface 1, by refraction formula,
\(\frac{\mu_{9}}{\mathrm{~V}_{1}}-\frac{\mu_{\mathrm{a}}}{\infty}=\frac{\mu_{\mathrm{a}}-\mu_{\mathrm{a}}}{\mathrm{R}}\)
\(\frac{1.5}{\mathrm{~V}_{1}}=\frac{1.5-1}{\mathrm{R}} \)
\(\frac{3}{2 \mathrm{v}_{1}}=\frac{1}{2 \mathrm{R}}\)
\( \Rightarrow \mathrm{V}_{1}=3 \mathrm{R}\)
Image formed by surface 1 acts as object for surface 2 ,
For surface 2.
\(v_{1}=u=3 R \)
\(\frac{\mu_{w}}{v_{2}}-\frac{\mu_{g}}{u}=\frac{\mu_{w}-\mu_{g}}{-R} \)
\(\frac{4}{3 \times v_{2}}-\frac{3}{2 \times 3 R}=\frac{\left(\frac{4}{3}-\frac{3}{2}\right)}{-R} \)
\(\frac{4}{3 v_{2}}-\frac{1}{2 R}=\frac{1}{6 R} \)
\(\Rightarrow \frac{4}{3 v_{2}}=\frac{2}{3 R} \)
\(v_{2}=2 R \)
So, focal length of lens at water surface is \(2 R\).
For effective lens;
\(\mathrm{U}_{e}=2 \mathrm{f} ; \mathrm{F}=\mathrm{V}_{2}=2 \mathrm{R}=2 \mathrm{f}\)
\(\frac{1}{\mathrm{v}_{\mathrm{e}}}-\frac{1}{\mathrm{u}_{e}}=\frac{1}{\mathrm{~F}}\)
\( \Rightarrow \frac{1}{\mathrm{~V}_{\mathrm{e}}}-\frac{1}{(-2 \mathrm{f})}=\frac{1}{2 f}\)
\(\Rightarrow \frac{1}{\mathrm{~V}_{\mathrm{e}}}+\frac{1}{2 f}=\frac{1}{2 f}\)
\(\frac{1}{\mathrm{~V}_{\mathrm{e}}}=0\)
\(\Rightarrow \mathrm{V}_{e} \rightarrow \infty\)
The distance between the lens and the image is greater than \(2 f\).