\(\mathrm{V}=3 \mathrm{~d}^3 4 \mathrm{~s}^2 ; \mathrm{V}^{2+}=3 \mathrm{~d}^3=3 \text { unpaired electrons } \)
\(\mathrm{Cr}=3 \mathrm{~d}^5 4 \mathrm{~s}^1 ; \mathrm{Cr}^{2+}=3 \mathrm{~d}^4=4 \text { unpaired electrons } \)
\(\mathrm{Mn}=3 \mathrm{~d}^5 4 \mathrm{~s}^2 ; \mathrm{Mn}^{2+}=3 \mathrm{~d}^5=5 \text { unpaired electrons } \)
\(\mathrm{Fe}=3 \mathrm{~d}^6 4 \mathrm{~s}^2 ; \mathrm{Fe}^{2+}=3 \mathrm{~d}^6=4 \text { unpaired electrons }\)
Hence the correct order of paramagnetic behaviour
\(\mathrm{V}^{2+}<\mathrm{Cr}^{2+}=\mathrm{Fe}^{2+}<\mathrm{Mn}^{2+}\)
(b) For the same oxidation state, the ionic radii generally decreases as the atomic number increases in a particular transition series, hence the order is
\(\mathrm{Mn}^{2+}>\mathrm{Fe}^{2+}>\mathrm{Co}^{2+}>\mathrm{Ni}^{2+}\)
(c) Larger size, least hydrated more stable in aqueous solution. As we move across the period \(\left(\mathrm{Sc}^{3+} \rightarrow \mathrm{Cr}^{3+} \rightarrow\right.\) \(\mathrm{Fe}^{3+} \rightarrow \mathrm{Co}^{3+}\) ), the ionic size usually decreases. \(\mathrm{Sc}^{3+}\) with the large size as least hydrated and hence more stable.
\(\text { (d) } \mathrm{Sc}-(+2),(+3) \)
\(\mathrm{Ti}-(+2),(+3),(+4) \)
\(\mathrm{Cr}-(+2),(+3),(+4),(+5),(+6) \)
\(\mathrm{Mn}-(+2),(+3),(+4),(+5),(+6),(+7) \)
\(\text { i.e. } \mathrm{Sc}<\mathrm{Ti}<\mathrm{Cr}<\mathrm{Mn}\)