Weight of empty LPG cylinder \(=14.8 \mathrm{~kg}\)
Weight of full LPG cylinder \(=29 \mathrm{~kg}\)
\(\therefore\) Weight of gas \(=29-14.8=14.2 \mathrm{~kg}\)
If weight of full LPG cylinder \(=23 \mathrm{~kg}\)
then weight of gas used \(=29-23=6 \mathrm{~kg}\) at ambient temperature.
From ideal gas equaiton, \(\mathrm{pV}=\mathrm{nRT}\)
or \(\mathrm{pV}=\frac{\text { Weight of solute }}{\text { Molecular mass of solute }} \times \mathrm{RT}\)
\(\operatorname{orpV}=\frac{\mathrm{W}}{\mathrm{M}} \times \mathrm{RT}\)
Applying ideal gas to LPG cylinder when gas is full,
\(\mathrm{pV}=\mathrm{nRT} \)
\(3.47 \mathrm{~atm} \times \mathrm{V}=\frac{14.2 \mathrm{~kg}}{\mathrm{M}} \times \mathrm{RT} ...............\text{(i)}\)
Applying ideal gas to LPG cylinder when gas is reduced to \(23 \mathrm{~kg}\) at ambient temperature,
\(\mathrm{pV}=\mathrm{nRT} \)
\(\mathrm{p} \times \mathrm{V}=\frac{8.2 \mathrm{~kg}}{\mathrm{M}} \times \mathrm{RT}...............\text{(ii)}\)
Divide Eq. (i) by (ii)
\(\frac{3.47 \times \mathrm{V}}{\mathrm{p} \times \mathrm{V}}=\frac{\frac{14.2 \mathrm{~kg} \mathrm{RT}}{\mathrm{M}}}{\frac{8.2 \mathrm{~kg} \times \mathrm{RT}}{\mathrm{M}}} \)
\(\frac{3.47}{\mathrm{p}}=\frac{14.2}{8.2} \)
\(\Rightarrow \mathrm{p}=\frac{3.47 \times 41}{71}=2.003 \mathrm{~atm}\)
Hence, answer is 2.