\(\begin{aligned} & \text { Hybridisation }=\frac{1}{2}\left[\left(\begin{array}{c}\text { No. of electrons } \\ \text { in valence } \\ \text { shell of atom }\end{array}\right)+\right. \\ & \left(\begin{array}{c}\text { No.of monovalent } \\ \text { atoms around it }\end{array}\right)-\left(\begin{array}{c}\text { Charge on } \\ \text { cation }\end{array}\right)+\left(\begin{array}{c}\text { Charge on } \\ \text { anion }\end{array}\right)\end{aligned}\)
(a) For \(\mathrm{AlH}_3\)
Hybridisation of \(\mathrm{Al}\) atom \(=\frac{1}{2}[3+3-0+0]=3=\mathrm{sp}^2\)
For \(\mathrm{AlH}_4\),
Hybridisation of \(\mathrm{A} 1\) atom \(=\frac{1}{2}[3+4-0+1]=4=\mathrm{sp}^3\)
(b) For \(\mathrm{H}_2 \mathrm{O}\),
Hybridisation of \(\mathrm{O}\) atom
\(=\frac{1}{2}[6+2-0+0]=4=\mathrm{sp}^3\)
For \(\mathrm{H}_3 \mathrm{O}^{+}\),
Hybridisation of \(\mathrm{O}\) atom
\(=\frac{1}{2}[6+3-1+0]=4=\mathrm{sp}^3\)
(c) For \(\mathrm{NH}_3\),
Hybridisation of \(\mathrm{N}\) atom
\(=\frac{1}{2}[5+3-0+0]=4=\mathrm{sp}^3\)
For \(\mathrm{NH}_4^{+}\),
Hybridisation of \(\mathrm{N}\) atom
\(=\frac{1}{2}[5+4-1+0]=4=\mathrm{sp}^3\)
Thus hybridisation changes only in option (a).