Let vapour pressure of \(A=P_A{ }^{\circ}\)
Vapour pressure of \(B=P_B{ }^{\circ}\)
In first solution,
Mole fraction of \(\mathrm{A}\left(\mathrm{X}_{\mathrm{A}}\right)=\frac{1}{1+2}=\frac{1}{3}\)
Mole fraction of \(\mathrm{B}\left(\mathrm{X}_{\mathrm{B}}\right)=\frac{2}{1+2}=\frac{2}{3}\)
According to Raoult's law,
Total vapour pressure \(=250=\mathrm{P}_{\mathrm{A}}{ }^{\circ} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^0 \mathrm{X}_{\mathrm{B}}\)
\(250=\frac{1}{3} \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\frac{2}{3} \mathrm{P}_{\mathrm{B}}{ }^{\circ}\)
In second solution
Mole fraction of \(\mathrm{A}\left(\mathrm{X}_{\mathrm{A}}\right)=\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
Mole fraction of \(\mathrm{B}\left(\mathrm{X}_{\mathrm{B}}\right)=\frac{2}{4}=\frac{1}{2}\)
\(\therefore\) Total vapour pressure \(=300=\mathrm{P}_{\mathrm{A}}{ }^{\infty} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}{ }^{\circ} \mathrm{X}_{\mathrm{B}}\)
\(300=\frac{1}{2} \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\frac{1}{2} \mathrm{P}_{\mathrm{B}}{ }^{\circ}\)
Multiplying equation (i) by \(\frac{1}{2}\) and equation (ii) by \(\frac{1}{3}\)
\(\frac{1}{6} \mathrm{P}_{\mathrm{A}}^{\circ}+\frac{2}{6} \mathrm{P}_{\mathrm{B}}{ }^{\circ}=125 \)
\(\frac{\frac{1}{6} \mathrm{P}_{\mathrm{A}}{ }^{\circ}+\frac{1}{6} \mathrm{P}_{\mathrm{B}}{ }^{\circ}=100}{\frac{1}{6} \mathrm{P}_{\mathrm{B}}{ }^{\circ}=25}\)
\(\mathrm{P}_{\mathrm{B}}{ }^{\circ}=25 \times 6=150 \mathrm{mmH} g\) On substituting value of \(\mathrm{P}_{\mathrm{B}}{ }^{\circ}\) in equation (ii)
we get
\(300=\mathrm{P}_{\mathrm{A}}^{\circ} \times \frac{1}{2}+150 \times \frac{1}{2} \)
\(\mathrm{P}_{\mathrm{A}}^{\circ}=450 \mathrm{mmH} g\)