Self Studies

Mathematics Test - 1

Result Self Studies

Mathematics Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The area bounded by \(y=\log x, x\)-axis and ordinates \(x=1, x=2\) is:

    Solution

    We know that:

    Area bounded by function f(x) and g(x) is given as,

    Area \(=\int_{\mathrm{a}}^{\mathrm{b}}[\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})] \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}}[\) Top \(-\) bottom \(] \mathrm{dx}\)

    Given: 

    \(y=\log x\)

    Then,

    Area \(=\int_{1}^{2} \log \mathrm{x} \mathrm{~dx}\)

    Applying by parts rule, we get:

    \(=[\log x \mathrm{x}]_{1}^{2}-\int_{1}^{2} \frac{1}{x} \times \mathrm{x} \mathrm{dx}\)

    \(=[\mathrm{x} \log \mathrm{x}]_{1}^{2}-[\mathrm{x}]_{1}^{2}\)

    \(=[2 \log 2-\log 1]-[2-1]\)

    \(=2 \log 2-1\)

    \(=\log 2^{2}-\log \mathrm{e}\)

    \(=\log 4-\log \mathrm{e}\)

    \(=\log \left(\frac{4}{e}\right)\) sq. unit

  • Question 2
    1 / -0

    The value of \(x\) for which \(|x+1|+\sqrt{(x-1)}=0\)

    Solution

    Given, \(|x+1|+\sqrt{(x-1)}=0\), where each term is non-negative.

    So, \(|x+1|=0\) and \(\sqrt{(x-1)}=0\) should be zero simultaneously.

    i.e. \(x=-1\) and \(x=1\), which is not possible.

    So, there is no value of \(x\) for which each term is zero simultaneously.

  • Question 3
    1 / -0

    If \(\beta\) is perpendicular to both \(\vec{\alpha}\) and \(\vec{\gamma}\) where \(\vec{\alpha}=\hat{k}\) and \(\vec{\gamma}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \mathrm{k},\) then what is \(\beta\) equal to?

    Solution

    Given:

    \(\vec{\alpha}=\mathrm{k}\) and \(\vec{\gamma}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}\)

    \(\vec{\beta}\) is perpendicular to both \(\vec{\alpha}\) and \(\vec{\gamma}\)

    \(\therefore \vec{\alpha} \times \vec{\gamma}=\vec{\beta}\)

    \(\vec{\alpha} \times \vec{\gamma}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 1 \\ 2 & 3 & 4\end{array}\right|\)

    \(=\hat{i}(0-3)-\hat{j}(0-2)+\hat{k}(0)\)

    \(=-3 \hat{i}+2 \hat{j}\)

  • Question 4
    1 / -0

    If \(A=\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\) and \(A + A ^{T}= I\) Where \(I\) is the unit matrix of \(2 \times 2\) and  \(A ^{T}\) is the transpose of \(A\), then the value of \(\theta\) is equal to:

    Solution

    Given:

    \(A =\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]\)

    \(A + A ^{T}=1\)

    The transpose of matrix \(A\) is given by,

    \(A^{T}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]\)

    As, \(A + A ^{T}=I\)

    \(\left[\begin{array}{cc}\cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]+\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]=I\)

    \(\Rightarrow\left[\begin{array}{cc}2 \cos 2 \theta & 0 \\ 0 & 2 \cos 2 \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)

    As we know that,

    If two matrices \(A\) and \(B\) are equal then their corresponding elements are also equal.

    \(\therefore 2 \cos 2 \theta=1\)

    \(\Rightarrow \cos 2 \theta=\frac{1}{2}\)

    \(\Rightarrow \cos 2 \theta=\cos 60^\circ\)

    \(\Rightarrow 2 \theta=\frac{\pi}{3}\quad[\because \cos 60^\circ=\frac{\pi}{3}]\)

    \(\therefore \theta=\frac{\pi}{6}\)

    So, the value of \(\theta\) is \(\frac{\pi}{6}\).

  • Question 5
    1 / -0

    The corner points of the feasible region determined by the system of linear constraints are \((0,10),(5,5),(25,20)\) and \((0,30)\). Let \(Z=p x+q y\) , where \(p, q>0\). Condition on \(p\) and \(q\) so that the maximum of \(Z\) occurs at both the points \((25,20)\) and \((0,30)\) is:

    Solution

    Maximum of \(Z\) occurs at \((25,20)\) and at \((0,30)\).

    So, equating the vales of \(Z\) at these points, we get

    \(25 p+20 q=30 q\)

    \( 25 p=10 q\)

    \(\therefore 5 p=2 q\)

    This is the required relation.

    Also as \(p, q>0\), the value of \(Z\) is always positive and hence, is greater at \((25,20)\) and at \((0,30)\) than at \((0,10)\) and \((5,5)\).

  • Question 6
    1 / -0

    Which one of the following is correct?

    Solution

    Let \(f(x)\) be any function.

    \(f(x)\) is onto if range of \(f(x)=\) Co-domain

    The function \(f\) is said to be many-one functions if there exist two or more than two different elements in \(X\) having the same image in \(Y\).

    Given function is:

    \(f: R \rightarrow\{0,1\}\), such that:

    \(f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is rational } \\0 \text { if } x \text { is irrational }\end{array}\right.\) 

    Co-domain \(=\{0,1\}\)

    Since, on taking a straight line parallel to the \(x\)-axis, the group of given function intersect it at many points.

    \(\Rightarrow f(x)\) is many-one.

    Range of function is \(\{0,1\}\)

    As range of \(f(x)=\) Co-domain 

    \(\Rightarrow f(x)\) is onto.

    Therefore, \(f(x)\) is many-one onto.

  • Question 7
    1 / -0

    If the mode of the scores 10, 12, 13, 15, 15, 13, 12, 10, x is 15, then what is the value of x?

    Solution

    Given scores 10, 12, 13, 15, 15, 13, 12, 10, x and mode = 15

    The mode of the n observation is the number that has the highest frequency.

    Frequency of score '12' = 2

    Frequency of score '15' = 2

    But for mode to be 15, x should be '15'.

  • Question 8
    1 / -0

    Form the differential equation of the following \(y^2=a\left(b^2-x^2\right)\).

    Solution

    Given equation is

    \(y ^2= a \left( b ^2- x ^2\right)\)

    Differentiating w.r.t \(x\)

    \(\Rightarrow 2 y^{\prime}=a(-2 x) \)

    \(\Rightarrow y^{\prime}=-a x\)

    Differentiating w.r.t \(x\) again

    \(\Rightarrow yy ^{\prime \prime}+\left( y ^{\prime}\right)^2=- a\)

    From (i) and (ii) we get

    \(\Rightarrow y y^{\prime}=x\left(y y^{\prime \prime}+\left(y^{\prime}\right)^2\right) \)

    \(\Rightarrow y y^{\prime}-x y y^{\prime \prime}-x\left(y^{\prime}\right)^2=0\)

  • Question 9
    1 / -0

    Find the area under the curve between \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=2 \mathrm{x}+6\).

    Solution

    \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=2 \mathrm{x}+6\)

    Finding a point of intersection:

    \(\Rightarrow \mathrm{x}=2 \mathrm{x}+6\)

    \(\Rightarrow \mathrm{x}=-6\) Thus, y = - 6.

    Let us draw the graph of the curve \(\mathrm{y}=\mathrm{x}\) and \(\mathrm{y}=2 \mathrm{x}+6\).


    Let the enclosed area be A.

    Using the formula of the area under the curve, 

    \(\mathrm{A}=\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \mathrm{dx}\right|\)

    \(\Rightarrow \mathrm{A}=\left|\int_{-6}^{0}(2 \mathrm{x}+6-\mathrm{x}) \mathrm{dx}\right|\)

    \(=\left|\int_{-6}^{0}(\mathrm{x}+6) \mathrm{dx}\right|\)

    \(=\left|\left[\frac{\mathrm{x}^{2}}{2}+6 \mathrm{x}\right]_{-6}^{0}\right|\)

    Substitute the limit to evaluate the area:

    \(\Rightarrow \mathrm{A}=\left|0+0-\frac{36}{2}+36\right|\) \(=18\)

  • Question 10
    1 / -0
    Evaluate \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\log (1+2 x)}{\tan 2 x}\)
    Solution

    Given:

    \(\underset{{{x \rightarrow 0} }}{\lim}\frac{\log (1+2 x)}{\tan 2 x}\)

    Dividing and multiplying the numerator and denominator by \(2x\), we get:

    \(=\underset{{{x \rightarrow 0} }}{\lim} \frac{\frac{\log (1+2 x)}{2 x} \times 2 x}{\frac{t a n 2 x}{2 x} \times 2 x}\)

    We know that:

    \(\underset{{{x \rightarrow a}}}{\lim}\left[\frac{f(x)}{g(x)}\right]=\frac{\underset{{{x \rightarrow a}}}{\lim} f(x)}{\underset{{{x \rightarrow a}}}{\lim} g(x)}\), provided \(\underset{{{x \rightarrow a}}}{\lim} g(x) \neq 0\) 

    \(=\frac{\underset{{{x \rightarrow 0} }}{\lim} \frac{\log (1+2 x)}{2 x}}{\underset{{{x \rightarrow 0} }}{\lim} \frac{\tan 2 x}{2 x}}\)

    As we know that:

    \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\tan {x}}{{x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\log (1+{x})}{{x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\tan 2 {x}}{2 {x}}=1\) 

    and, \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\log (1+2 {x})}{2 {x}}=1\)

    Therefore, 

    \(\underset{{{{x} \rightarrow 0}}}{\lim} \frac{\log (1+2 {x})}{\tan 2 {x}}=\frac{1}{1}=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now