Self Studies

Mathematics Test - 11

Result Self Studies

Mathematics Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let P(3,3) be a point on the hyperbola, \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\). If the normal to it at P intersects the x-axis at (9,0) and e is its eccentricity, then the ordered pair (a2,e2) is equal to :

    Solution

    ∵ The equation of hyperbola is \(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\)

    ∵ Equation of hyperbola passes through (3,3)

    \(\frac{1}{a^2}-\frac{1}{b^2}=\frac{1}{9} \ldots \text { (i) }\)

    Equation of normal at point (3,3) is:

    \(\frac{x-3}{\frac{1}{a^2} \cdot 3}=\frac{y-3}{-\frac{1}{b^2} \cdot 3}\)

    ∵ It passes through (9,0)

    \(\frac{6}{\frac{1}{a^2}}=\frac{-3}{-\frac{1}{b^2}}\)

    \(\frac{1}{b^2}=\frac{1}{2 a^2} \ldots \text { (ii) }\)

    From equations (i) and (ii),

    \(a^2=\frac{9}{2}, b^2=9\)

    \(\because \text { Eccentricity }=\mathrm{e}, \text { then } \mathrm{e}^2=1+\frac{\mathrm{b}^2}{\mathrm{a}^2}=3\)

    \(\therefore\left(\mathrm{a}^2, \mathrm{e}^2\right)=\left(\frac{9}{2}, 3\right)\)

  • Question 2
    1 / -0

    There are 20 cricket players, out of which 5 players can bowl. In how many ways can a team of 11 players be selected so, to include 4 bowlers?

    Solution

    Given that:

    There are 20 cricket players, out of which 5 players can bowl.

    We have to make a team of 11 players so to include 4 bowlers.

    So, we select 4 bowlers out of 5 players and the remaining 7 players must be selected from 15 players, i.e.,

    Total ways \(={ }^{5} {C}_{4} \times{ }^{15} {C}_{7}\)

  • Question 3
    1 / -0

    Solve: |x – 1| ≤ 5, |x| ≥ 2

    Solution

    Given,

    |x – 1| ≤ 5, |x| ≥ 2

    ⇒ -(5 ≤ (x – 1) ≤ 5), (x ≤ -2 or x ≥ 2)

    ⇒ -(4 ≤ x ≤ 6), (x ≤ -2 or x ≥ 2)

    Now, required solution is

    x ∈ [-4, -2] ∪ [2, 6]

  • Question 4
    1 / -0

    If \(\sec ^{2} \theta+\tan ^{2} \theta=3\) then find the value of \(\cot \theta\).

    Solution

    Given,

    \(\sec ^{2} \theta+\tan ^{2} \theta=3\)...(i)

    Subtracting 1 from both sides in equation (i) we get,

    \(\sec ^{2} \theta+\tan ^{2} \theta-1=3-1\)\(\quad(\because\)\(\sec ^{2} \theta-1=\tan ^{2} \theta)\)

    \(\Rightarrow \tan ^{2} \theta+\tan ^{2} \theta=2\)

    \(\Rightarrow 2 \tan ^{2} \theta=2\)

    \(\Rightarrow \tan ^{2} \theta=1\)

    \(\Rightarrow \tan \theta=1\)

    Now,

    \(\cot \theta=\frac{1}{\tan \theta}\)

    \(=1\)

  • Question 5
    1 / -0

    If \(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})\) be twice differential functions on \([0,~2]\) satisfying \(\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g}^{\prime \prime}(\mathrm{x}), \mathrm{f}^{\prime}(1)\) \(=2 g^{\prime}(1)=4\) and \(f(2)=3 g(2)=9,\) then:

    Solution
    We have \(\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g} "(\mathrm{x}) .\)
    On integration,
    \(\Rightarrow\)\(\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{C} \ldots\). (i)
    Putting \(\mathrm{x}=1,\)
    \(\Rightarrow\)\(f^{\prime}(1)=g^{\prime}(1)+C\)
    \( \Rightarrow 4=2+C\)
    \(\Rightarrow C=2\)
    \(\therefore \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+2\)
    Integrating with respect to \(x,\)
    \(\Rightarrow\)\(f(x)=g(x)+2 x+c_{1}\)
    Putting \(\mathrm{x}=2\),
    \(\Rightarrow\)\(f(2)=g(2)+4+c_{1}\)
    \( \Rightarrow 9=3+4+c_{1}\)
    \( \Rightarrow c_{1}=2\)
    \(\therefore \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+2 \mathrm{x}+2\).
    \(\Rightarrow\)\(|f(x)-g(x)|<2\)
    \( \Rightarrow|2 x+2|<2\)
    \( \Rightarrow|x+1|<1\)
    \( \Rightarrow\) \(\mathrm{f}(2)=\mathrm{g}(2)\)
    \( \Rightarrow \mathrm{x}=-1\)
    \(\Rightarrow\)\(f(x)-g(x)=2 x\) has no solution.
  • Question 6
    1 / -0

    Let the image of the point \((1,0,7)\) in the line \(\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}\) be the point \((\alpha, \beta, \gamma)\). Then which one of the following points lies on the line passing through \((\alpha, \beta, \gamma)\) and making angles \(\frac{2 \pi}{3}\) and \(\frac{3 \pi}{4}\) with \(\mathrm{y}\)-axis and \(\mathrm{z}\)-axis respectively and an acute angle with \(\mathrm{x}\)-axis?

    Solution

    \(L_1=\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda\)

    M(λ,1+2λ,2+3λ)

    \(\overrightarrow{\mathrm{PM}}=(\lambda-1) \hat{\mathrm{i}}+(1+2 \lambda) \hat{\mathrm{j}}+(3 \lambda-5) \hat{\mathrm{k}}\)

    \(\overrightarrow{\mathrm{PM}} \text { is perpendicular to line } \mathrm{L}_1\)

    \( \overrightarrow{\mathrm{PM}} \cdot \overrightarrow{\mathrm{b}}=0 \quad(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\\)

    \( \Rightarrow \lambda-1+4 \lambda+2+9 \lambda-15=0\)

    14λ=14λ=1

    M=(1,3,5)

    \( \vec{Q}=2 \vec{M}-\vec{P}[M \text { is midpoint of } \vec{P} \& \vec{Q}] \\\)

    \( \vec{Q}=2 \hat{i}+6 \hat{j}+10 \hat{k}-\hat{i}-7 \hat{k} \\\)

    \( \vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)

    (α,β,γ)=(1,6,3)
    Required line having direction cosine (l,m,n)
    l2+m2+n2=1

    \(\Rightarrow 1^2+\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{\sqrt{2}}\right)^2=1\)

    \(1^2=\frac{1}{4}\)

    \(\therefore 1=\frac{1}{2}\) [Line make acute angle with x-axis]

    Equation of line passing through (1,6,3) will be

    \(\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mu\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\right)\)

  • Question 7
    1 / -0

    The value of \(\sin ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\) is equal to:

    Solution

    We have to find the value of \(\sin ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{3}{5}\right)\).

    We know that: \(\sin ^{-1} {x}-\sin ^{-1} {y}=\sin ^{-1}\left({x} \sqrt{1-{y}^{2}}-{y} \sqrt{1-{x}^{2}}\right)\)

    \(\therefore \sin ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{1-\left(\frac{3}{5}\right)^{2}}\right)-\left(\frac{3}{5} \sqrt{1-\left(\frac{4}{5}\right)^{2}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{1-\frac{9}{25}}\right)-\left(\frac{3}{5} \sqrt{1-\frac{16}{25}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\frac{25-9}{25}}\right)-\left(\frac{3}{5} \sqrt{\frac{25-16}{25}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\frac{16}{25}}\right)-\left(\frac{3}{5} \sqrt{\frac{9}{25}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \sqrt{\left(\frac{4}{5}\right)^{2}}\right)-\left(\frac{3}{5} \sqrt{\left(\frac{3}{5}\right)^{2}}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{4}{5} \times \frac{4}{5}\right)-\left(\frac{3}{5} \times \frac{3}{5}\right)\right)\)

    \(=\sin ^{-1}\left(\left(\frac{16}{25}\right)-\left(\frac{9}{25}\right)\right)=\sin ^{-1}\left(\frac{7}{25}\right)\)

  • Question 8
    1 / -0

    Solution

  • Question 9
    1 / -0

    Find the standard deviation of the given set: \(\{12,15,16,14,18\}\)

    Solution

    Given:

    Numbers \(=\{12,15,16,14,18\}\)

    Sum of numbers \(=12,15,16,14,18\)

    \(\Rightarrow\) Sum \(=75\)

    Mean = Sum of numbers / Number of observations

    Variance \(=\left[\sum(\mathrm{x}-\overline{\mathrm{x}})\right] / \mathrm{n}\)

    Standard deviation \(=\sqrt{\text { Variance }}\)

    Where,

    \(\mathrm x=\) number

    \(\bar{\mathrm x}=\) mean of numbers

    \(n=\) number of observations

    Mean \(=75 / 5=15\)

    Variance \(=\left[(12-15)^{2}+(15-15)^{2}+(16-15)^{2}+(14-15)^{2}+(18-15)^{2}\right] / 5\)

    \(\Rightarrow\left(3^{2}+0^{2}+1^{2}+1^{2}+3^{2}\right) / 5\)

    \(\Rightarrow 20 / 5\)

    \(\Rightarrow 4\)

    Standard deviation \(=\sqrt{4}\)

    \(\therefore\) The standard deviation of the given set of numbers is 2.

  • Question 10
    1 / -0

    The value of \(\left|\begin{array}{ccc}a & b & c \\ b+c & c+a & a+b \\ a^{2} & b^{2} & c^{2}\end{array}\right|\) is:

    Solution

    Given,

    \(A=\left|\begin{array}{ccc}a & b & c \\ b+c & c+a & a+b \\ a^{2} & b^{2} & c^{2}\end{array}\right|\)

    Applying the column operations

    \(\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}\) and \(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}\)

    \(A=\left|\begin{array}{ccc}a-b & b-c & c \\ b-a & c-b & a+b \\ a^{2}-b^{2} & b^{2}-c^{2} & c^{2}\end{array}\right|\)

    Taking common (a-b) and (b-c) From first and second column respectively.

    \(\Rightarrow(a-b)(b-c)\left|\begin{array}{ccc}1 & 1 & c \\ -1 & -1 & a+b \\ a+b & b+c & c^{2}\end{array}\right|\)

    Applying column operation \(C_{1} \rightarrow C_{1}-C_{2}\)

    \(\Rightarrow(a-b)(b-c)\left|\begin{array}{ccc}0 & 1 & c \\ 0 & -1 & a+b \\ a-c & b+c & c^{2}\end{array}\right|\)

    Now solving the determinant we get,

    \(A=(a-b)(b-c)[(a-c) \times\{(a+b)-(-c)\}]\)

    \(A=-(a-b)(b-c)(c-a)(a+b+c)\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now