\(L_1=\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda\)

M(λ,1+2λ,2+3λ)
\(\overrightarrow{\mathrm{PM}}=(\lambda-1) \hat{\mathrm{i}}+(1+2 \lambda) \hat{\mathrm{j}}+(3 \lambda-5) \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{PM}} \text { is perpendicular to line } \mathrm{L}_1\)
\( \overrightarrow{\mathrm{PM}} \cdot \overrightarrow{\mathrm{b}}=0 \quad(\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\\)
\( \Rightarrow \lambda-1+4 \lambda+2+9 \lambda-15=0\)
14λ=14⇒λ=1
∴M=(1,3,5)
\( \vec{Q}=2 \vec{M}-\vec{P}[M \text { is midpoint of } \vec{P} \& \vec{Q}] \\\)
\( \vec{Q}=2 \hat{i}+6 \hat{j}+10 \hat{k}-\hat{i}-7 \hat{k} \\\)
\( \vec{Q}=\hat{i}+6 \hat{j}+3 \hat{k}\)
∴(α,β,γ)=(1,6,3)
Required line having direction cosine (l,m,n)
l2+m2+n2=1
\(\Rightarrow 1^2+\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{\sqrt{2}}\right)^2=1\)
\(1^2=\frac{1}{4}\)
\(\therefore 1=\frac{1}{2}\) [Line make acute angle with x-axis]
Equation of line passing through (1,6,3) will be
\(\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\mu\left(\frac{1}{2} \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\right)\)