Given:
\(\mathrm{P}(\mathrm{n})=3^{(2 \mathrm{n}+2)}-8 \mathrm{n}-9=8 \mathrm{~m}\)
Where \(\mathrm{a} \in \mathrm{N}\), i.e. a is a natural number.
For \(\mathrm{n}=1\)
\(\text { LHS }=3^{(2 \times 1+2)}-8 \times 1-9 \)
\(=3^{4}-17 \)
\(=81-17 \)
\(=64=8 \times 8\)
Therefore, \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}=1\)
Suppose, \(\mathrm{P}(\mathrm{k})\) is true.
\(3^{(2 k+2)}-8 k-9=8 a\).....(1) [where \(\mathrm{a} \in \mathrm{N}\)]
Now, we will prove that \(\mathrm{P}(\mathrm{k}+1)\) is true.
\(\text { LHS }=3^{2(\mathrm{k}+1)+2}-8(\mathrm{k}+1)-9 \)
\(=9\left[3^{(2 \mathrm{k}+2)}\right]-8 \mathrm{k}-17\)
From equation (1), we get
\(=9[8 \mathrm{a}+9+8 \mathrm{k}]-8 \mathrm{k}-17 \)
\(=72 \mathrm{a}+64 \mathrm{k}+64 \)
\(=8(9 \mathrm{a}+8 \mathrm{k}+8) \)
\(=8 \mathrm{~b}\)
Where \(\mathrm{b}=9 \mathrm{a}+8 \mathrm{k}+8\) and \(\mathrm{b}\) is natural number.
Therefore, \(\mathrm{P}(\mathrm{k}+1)\) is true whenever \(\mathrm{P}(\mathrm{k})\) is true.
Therefore, \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}\), where \(\mathrm{n}\) is a natural number.
So, the given equation is divisible by 8.