Self Studies

Mathematics Test - 12

Result Self Studies

Mathematics Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The sum of the 3rd and the 7th term of an A.P. is 30 and the sum of the 5th and the 9th term is 56. Find the sum of the 4th and the 8th terms of the same series.

    Solution

    Given,

    The sum of the 3rd and the 7th term of an A.P. is 30 and the sum of the 5th and the 9th term is 56.

    Let the first term of the A.P. be 'a' and the common difference 'd'.

    nth term of an A.P.,

    \(a_n = a + (n-1)d\)

    \(a_3 = a + (3-1)d\)

    \(\Rightarrow a_3 = a + 2d\)

    \(a_7 = a + (7-1)d\)

    \(\Rightarrow a_7 = a + 6d\)

    \(a_5 = a + (5-1)d\)

    \(\Rightarrow a_7 = a + 4d\)

    \(a_9 = a + (9-1)d\)

    \(\Rightarrow a_9 = a + 8d\)

    Therefore, we can write

    \({a}_{3}+a_{7}\) = 30

    a + 2d + a + 6d = 30

    2a + 8d = 30 ...(i)

    And, \({a}_{5}+a_{9}\) = 56

    a + 4d + a + 8d = 56

    2a + 12d = 56 ...(ii)

    On solving equation (i) and equation (ii), we get

    4a + 20d = 86

    2a + 10d = 43.....(iii)

    \({a}_{4}+a_{8}\) = a + (4-1)d + a + (8-1)d

    = a + 3d +a + 7d

    = 2a +10d

    From equation (iii), we get

    The sum of the fourth and eighth terms of the series,

    \({a}_{4}+a_{8}\) = 43

  • Question 2
    1 / -0

    If \(\mathrm{X}=\left\{8^{\mathrm{n}}-7 \mathrm{n}-1, \mathrm{n} \in \mathbf{N}\right\}\) and \(\mathrm{Y}=49(\mathrm{n}-1), \mathrm{n} \in \mathbf{N},\) then: \((\) given \(\mathrm{n}>1)\)

    Solution

    Given, 

    \(\mathrm{X}=8^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=(1+7)^{\mathrm{n}}-7 n-1\)

    \(=1+7 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}\)

    \(=49\left[\frac{\mathrm{n}(\mathrm{n}-1)}{2}+\ldots+7^{\mathrm{n}-2}\right]\)

    So, the set \(\mathrm{X}\) will be some specific multiples of \(49\).

    \(\Rightarrow\)\(\mathrm{Y}=49(\mathrm{n}-1)\)

    Therefore, the set \(Y\) will be all multiples of \(49 .\) So, it will contain the elements of \(\mathrm{X}\) too.

    So, \(\mathrm{X} \subset \mathrm{Y}\)

  • Question 3
    1 / -0

    Find the value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 6 x+4 x}{4 x+\tan x}\)

    Solution

    We know that:

    \(\underset{{{x \rightarrow a}}}{\lim}\left[\frac{f(x)}{g(x)}\right]=\frac{\underset{{{x \rightarrow a}}}{\lim}f(x)}{\underset{{{x \rightarrow a}}}{\lim}g(x)}\), provided \(\underset{{{x \rightarrow a}}}{\lim} g(x) \neq 0\)

    Given:

    \(\lim _{x \rightarrow 0} \frac{\tan 6 x+4 x}{4 x+\tan x}\)

    Dividing by \(6x\) in numerator and denominator, we get:

    \(=\underset{{{{x} \rightarrow 0} }}{\lim}\frac{\frac{\tan 6 x}{6 x}+\frac{4 x}{6 x}}{\frac{4 x}{6 x}+\left(\frac{1}{6}\right) \frac{\tan x}{x}} \quad\left[\because \underset{{{{x} \rightarrow 0} }}{\lim} \frac{\tan x}{x}=1,\underset{{{{x} \rightarrow 0} }}{\lim} \frac{\tan 6 x}{6 x}=1\right]\)

    \(=\underset{{{{x} \rightarrow 0} }}{\lim} \frac{1+\frac{4}{6}}{\frac{4}{6}+\frac{1}{6}}\)

    \(=\frac{1+\frac{4}{6}}{\frac{4}{6}+\frac{1}{6}}\)

    \(=\frac{\frac{6+4}{6}}{\frac{4+1}{6}}\)

    \(=\frac{10}{5}\)

    \(=2\)

  • Question 4
    1 / -0

    In a group of 400 people, 160 are smokers and non-vegetarian; 100 are smokers and vegetarian and the remaining 140 are non-smokers and vegetarian. Their chances of getting a particular chest disorder are 35%,20and 10%, respectively. A person is chosen from the group at random and is found to be suffering from the chest disorder. The probability that the selected person is a smoker and non-vegetarian is :

    Solution

    Let 'A' be the event of smokers and non-vegetarian.

    Let ' B ' be the event of smokers and vegetarian.

    Let 'C ' be the event of non-smokers and vegetarian.

    Let ' E' be the event of chest disorders.

    According to question,

     

    \(P(A)=\frac{160}{400}=\frac{2}{5}, P(B)=\frac{100}{400}=\frac{1}{4} \\\)

     

    \( P(C)=\frac{140}{400}=\frac{7}{20} P\left(\frac{E}{A}\right)=35 \%=\frac{35}{100} \\\)

    \( P\left(\frac{E}{B}\right)=\frac{20}{100}, P\left(\frac{E}{C}\right)=\frac{10}{100}\)

    Thus,

    \(P\left(\frac{A}{E}\right)=\frac{P(A) \cdot P\left(\frac{E}{A}\right)}{P(A) \cdot P\left(\frac{E}{A}\right)+P(B) P\left(\frac{E}{B}\right)+P(C) P\left(\frac{E}{C}\right)} \\\)

    \(=\frac{\frac{2}{5} \cdot \frac{35}{100}}{\frac{2}{5} \cdot \frac{35}{100}+\frac{1}{4} \cdot \frac{20}{100}+\frac{7}{20} \cdot \frac{10}{100}} \\\)

    \( =\frac{14}{100} \\\)

    \( \frac{14}{100}+\frac{5}{100}+\frac{\frac{7}{100}}{14} \\\)

    \( =\frac{14}{14+5+\frac{7}{2}}=\frac{28}{45}\)

  • Question 5
    1 / -0

    Let the line \(L\) pass through the point \((0,1,2)\), intersect the line \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and be parallel to the plane \(2 x+y-3 z=4\). Then the distance of the point \(P(1,-9,2)\) from the line \(L\) is:

    Solution


    \(\overrightarrow{\mathrm{PQ}}=(2 \lambda+1,3 \lambda+1,4 \lambda+1) \\\)

    \( \overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{n}}=0 \Rightarrow(2 \lambda+1) \cdot(2)+(3 \lambda+1)(1)+(4 \lambda+1)(-3)=0 \\\)

    \( \Rightarrow-5 \lambda=0 \\\)

    \( \Rightarrow \lambda=0 \\\)

    \( Q=(1,2,3) \\\)

    \( \frac{x-0}{1}=\frac{y-1}{1}=\frac{z-2}{1}=\mu \\\)

    \( \text { distance of line from }(1,-9,2) \\\)

    \( \left(P^{\prime} Q\right) \cdot(1,1,1)=0 \\\)

    \( \Rightarrow[\mu-1, \mu+10, \mu] \cdot[1,1,1]=0 \\\)

    \( \Rightarrow \mu-1+\mu+10+\mu=0 \\\)

    \(\mu=-3 \\\)

    \( Q^{\prime}=(-3,-2,1) \\\)

    \( P^{\prime} Q^{\prime}=\sqrt{16+49+9}=\sqrt{74}\)

  • Question 6
    1 / -0

    Using principle of mathematical induction, prove that for \(n \in N\), \(3^{2 n+2}-8 n-9\) is:

    Solution

    Given:

    \(\mathrm{P}(\mathrm{n})=3^{(2 \mathrm{n}+2)}-8 \mathrm{n}-9=8 \mathrm{~m}\)

    Where \(\mathrm{a} \in \mathrm{N}\), i.e. a is a natural number.

    For \(\mathrm{n}=1\)

    \(\text { LHS }=3^{(2 \times 1+2)}-8 \times 1-9 \)

    \(=3^{4}-17 \)

    \(=81-17 \)

    \(=64=8 \times 8\)

    Therefore, \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}=1\)

    Suppose, \(\mathrm{P}(\mathrm{k})\) is true.

    \(3^{(2 k+2)}-8 k-9=8 a\).....(1) [where \(\mathrm{a} \in \mathrm{N}\)]

    Now, we will prove that \(\mathrm{P}(\mathrm{k}+1)\) is true.

    \(\text { LHS }=3^{2(\mathrm{k}+1)+2}-8(\mathrm{k}+1)-9 \)

    \(=9\left[3^{(2 \mathrm{k}+2)}\right]-8 \mathrm{k}-17\)

    From equation (1), we get

    \(=9[8 \mathrm{a}+9+8 \mathrm{k}]-8 \mathrm{k}-17 \)

    \(=72 \mathrm{a}+64 \mathrm{k}+64 \)

    \(=8(9 \mathrm{a}+8 \mathrm{k}+8) \)

    \(=8 \mathrm{~b}\)

    Where \(\mathrm{b}=9 \mathrm{a}+8 \mathrm{k}+8\) and \(\mathrm{b}\) is natural number.

    Therefore, \(\mathrm{P}(\mathrm{k}+1)\) is true whenever \(\mathrm{P}(\mathrm{k})\) is true.

    Therefore, \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}\), where \(\mathrm{n}\) is a natural number.

    So, the given equation is divisible by 8.

  • Question 7
    1 / -0

    Find the value of 'a' so that the volume of parallelepiped formed by \(\hat{i}+a \hat{j}+\hat{k}\); \(\hat{j} + a\hat{k}\) and \(a\hat{ i}+ \hat{k}\) becomes minimum.

    Solution

    Volume of the parallelepiped

    \(V =[\hat{i}+a \hat{j}+\hat{k} \hat{j}+a \hat{k} \quad a \hat{i}+\hat{k}]\)

    \(=(\hat{i}+a \hat{j}+\hat{k}) \cdot\{(\hat{j}+a \hat{k}) \times(a \hat{i}+\hat{k})\}\)

    \(=(\hat{i}+a \hat{j}+\hat{k}) \cdot\left\{\hat{i}+a^{2} \hat{j}-a \hat{k}\right\}\)

    \(=1+a^{3}-a\)

    Now,

    \(\frac{d V}{d a}=3 a^{2}-1 \Rightarrow \frac{d^{2} V}{d a^{2}}=6 a\)

    \(\frac{d V}{d a}=0 \Rightarrow 3 a^{2}-1=0 \Rightarrow a=\pm \frac{1}{\sqrt{3}}\)

    At \(a=\frac{1}{\sqrt{3}}\),

    \(\frac{d^{2} V}{d a^{2}}=\frac{6}{\sqrt{3}}>0\)

    Therefore, \(V\) is minimum at \(a=\frac{1}{\sqrt{3}}\)

  • Question 8
    1 / -0

    If \(y=3 t^{2}-4 t-3\) and \(x=8 t+5\), find \(\frac{d y}{d x}\) at \(t=6\).

    Solution

    Given:

    \(y=3 t^{2}-4 t-3\)

    Differentiating above with respect to t, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dt}}=6 \mathrm{t}-4\)

    Similarly,

    \(x=8 t+5\)

    Differentiating above with respect to t, we get:

    \(\frac{\mathrm{dx}}{\mathrm{dt}}=8\)

    \(\frac{\mathrm{dx}}{\mathrm{dt}}=8\)

    As we know:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\frac{\mathrm{dy}}{\mathrm{dt}}}{\frac{\mathrm{dx}}{\mathrm{dt}}}\)

    Then,

    \(\frac{d y}{d x}=\frac{6 t-4}{8}\)

    At t = 6, we get:

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{(6 \times 6)-4}{8}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{32}{8}\)

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=4\)

  • Question 9
    1 / -0

    The tangent to the curve \(y=e^{2 x}\) at the point \((0,1)\) meet the \(x\)-axis at

    Solution

    Given: \(y=e^{2 x}\)

    \(d y / d x=2 e^{2 x}\)

    Hence, dy/dx at \((0,1)\) is \(=2 \mathrm{e}^{0}=2(1)=2\)

    Therefore, the equation of a tangent is \(y-1=2(x-0)\)

    \(\Rightarrow 2 x-y+1=0\), if it meet the \(x\)-axis, then \(y=0\)

    Hence, \(x=-1 / 2\)

    Hence, the point is \((-1 / 2,0)\).

    Hence, the correct option is (C).

  • Question 10
    1 / -0

    Let \(\vec{\alpha}=3 \hat{i}+\hat{j}\) and \(\vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}.\) If \((\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2,\) where \(\vec{\beta}_1\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) is perpendicular to \(\vec{\alpha}\), then \(\vec{\beta}_1 \times \vec{\beta}_2\) is equal to:

    Solution

     

    \(\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2 \ldots \ldots(1)\)

    Since, \(\overrightarrow{\beta_2}\) is perpendicular to \(\vec{\alpha}.\)

    \(\therefore \overrightarrow{\beta_2} \cdot \vec{\alpha}=0\)

    Since, \(\overrightarrow{\beta_1}\) is parallel to \(\vec{a}.\)

    then \(\overrightarrow{\beta_1}=\lambda \vec{a}\) (say)

    \(\vec{a} \cdot \vec{\beta}=\vec{a} \cdot \overrightarrow{\beta_1}-\alpha \cdot \overrightarrow{\beta_2} \\\)

    \(\Rightarrow 5=\lambda \alpha^2 \Rightarrow 5=\lambda \times 10(\because|\vec{\alpha}|=\sqrt{10}) \\\)

    \(\Rightarrow \lambda=\frac{1}{2} \therefore \overrightarrow{\mathrm{B}_1}=\frac{\alpha}{2}\)

    \(\therefore \vec{\beta}_1=\frac{\vec{\alpha}}{2}\)

    \(\text { Cross product with } \overrightarrow{\mathrm{B}}_1 \text { in equation (1) }\)

    \(\Rightarrow \vec{\beta} \times \vec{B}_1=-\vec{B}_2 \times \vec{B}_1\)

     

    \(\Rightarrow \vec{\beta} \times \vec{B}_1=\vec{B}_1 \times \vec{B}_2 \Rightarrow \vec{\beta}_1 \times \vec{\beta}_2=\frac{\vec{\beta} \times \vec{a}}{2}\)
    \(\Rightarrow \vec{B}_1 \times \vec{B}_2=\frac{1}{2}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\\hat{2} & -1 & 3 \\3 & 1 & 0\end{array}\right|\)


    \(=\frac{1}{2}[-3 \hat{i}-\hat{j}(-9)+\hat{k}(5)]=\frac{1}{2}[-3 \hat{i}+9 \hat{j}+5 \hat{k}]\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now