Self Studies

Mathematics Test - 14

Result Self Studies

Mathematics Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan ^{2} 3 x}{x^{2}}\) is:

    Solution

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan ^{2} 3 x}{x^{2}}\)

    Dividing by \(9\) in both numerator and denominator, we get:

    \(=\underset{{{x \rightarrow 0}}}{\lim}\frac{\tan ^{2} 3 x}{x^{2}} \times \frac{9}{9}\)

    \(=\underset{{{x \rightarrow 0}}}{\lim} \frac{9 \tan ^{2} 3 x}{(3 x)^{2}}\)

    \(=9 \times \underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 3 x}{3 x} \times \underset{{{x \rightarrow 0}}}{\lim} \frac{\tan 3 x}{3 x}\)

    We know that:

    \(\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\tan {x}}{{x}}=1\)

    Therefore,

    \(=9 \times 1 \times 1\)

    \(=9\)

    Therefore, the value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\tan ^{2} 3 x}{x^{2}}\) is\(9\).

  • Question 2
    1 / -0

    The value of \(\omega^{6}+\omega^{7}+\omega^{5}\) is

    Solution

    \(\omega^{6}+\omega^{7}+\omega^{5}\)

    \(=\omega^{5}\left(\omega+\omega^{2}+1\right)\)

    \(=\omega^{5} \times\left(1+\omega+\omega^{2}\right)\)

    \(=\omega^{5} \times 0\)

    \(=0\)

  • Question 3
    1 / -0

    Let \(\mathrm{L}\) denote the set of all straight lines in a plane. Let a relation \(\mathrm{R}\) be \(\mathrm{l R m}\) if \(\mathrm{l}\) is perpendicular to \(\mathrm{m \forall l, m \in L}\). Then \(\mathrm{R}\) is:

    Solution

    Let two lines \(\ell_{1}, \ell_{2} \in \mathrm{L}\)

    Now \(\left(\ell_{1}, \ell_{2}\right) \in R\)

    Only when \(\ell_{1} \perp \ell_{2}\)

    1. For reflexivity:

    Let \(\ell_{1} \in \mathrm{L}\)

    But \(\left(\ell_{1}, \ell_{1}\right) \notin R\)

    Since, no line is perpendicular to itself.

    Therefore, \(\mathrm{R}\) is not reflexive.

    2. For symmetric:

    Let, \(\left(\ell_{1}, \ell_{2}\right) \in \mathrm{L}\)

    Now, if \(\ell_{1} \perp \ell_{2}\), then this implies that \(\ell_{2}\) is also perpendicular to \(\ell_{1}\).

    So, \(\left(\ell_{1}, \ell_{2}\right) \in L\)

    Therefore, \(\mathrm{R}\) is symmetric.

    3. For Transitive:

    Let \(\left(\ell_{1}, \ell_{2}\right) \in L\) and \(\left(\ell_{2}, \ell_{3}\right) \in L\)

    \(\ell_{1} \perp \ell_{2}\) and \(\ell_{2} \perp \ell_{3}\)

    \(\ell_{1}\) is not perpendicular to \(\ell_{3}\).

    \(\left(\ell_{1}, \ell_{3}\right) \notin \mathrm{R}\)

    So, R is not transitive.

  • Question 4
    1 / -0

    Let S={1,2,3,...,2022}. Then the probability, that a randomly chosen number n from the set S such that HCF(n,2022)=1, is :

    Solution

    \(\mathrm{S}=\{1,2,3, \ldots \ldots . .2022\} \\\)

    \( \operatorname{HCF}(\mathrm{n}, 2022)=1\)

    \(\Rightarrow \mathrm{n}\) and 2022 have no common factor

    Total elements \(=2022\)

    \(2022=2 \times 3 \times 337\)

    M : numbers divisible by 2 .

    \(\{2,4,6, \ldots \ldots ., 2022\} n(M)=1011\)

    \(\mathrm{N}\) : numbers divisible by 3 .

    \(\{3,6,9, \ldots \ldots . .2022\} n(N)=674\)

    \(\mathrm{L}:\) numbers divisible by 6 .

    \( \{6,12,18, \ldots \ldots, 2022\} n(L)=337 \\\)

    \( n(M \cup N)=n(M)+n(N)-n(L) \\\)

    \( =1011+674-337 \\\)

    \( =1348\)

    \(0=\) Number divisible by 337 but not in M UN

    \(\{337,1685\}\)

    Number divisible by 2,3 or 337

    \( =1348+2=1350 \\\)

    \( \text { Required probability }=\frac{2022-1350}{2022} \\\)

    \( =\frac{672}{2022} \\\)

    \( =\frac{112}{337}\)


  • Question 5
    1 / -0
    If \(\mathrm{f}(\mathrm{x})=\frac{\log (1+\mathrm{ax})-\log (1-\mathrm{bx})}{\mathrm{x}}\) for \(\mathrm{x} \neq 0\) and \(\mathrm{f}(0)=\mathrm{k}\) and \(\mathrm{f}(\mathrm{x})\) is continuous at \(\mathrm{x}=0\), then \(\mathrm{k}\) is equal to:
    Solution

    Given, \(f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}\)

    \(\mathrm{f}(\mathrm{x})\) is continuous at \(\mathrm{x}=\mathrm{k}\) and \(\mathrm{f}(0)=\mathrm{k}\)

    \(\therefore \lim _{x \rightarrow 0} \mathrm{f}(\mathrm{x})=\lim _{x \rightarrow 0} \frac{\log (1+\operatorname{ax})-\log (1-\mathrm{bx})}{\mathrm{x}}\left(\frac{0}{0}\right.\) form \()\)

    \(=\lim _{x \rightarrow 0}\left(\frac{1}{1+\operatorname{ax}} a+\frac{b}{1-b x}\right)\)

    \(=\mathrm{a}+\mathrm{b}\)

    \(\therefore \quad \mathrm{a}+\mathrm{b}=\mathrm{f}(0)=\mathrm{k}\)

  • Question 6
    1 / -0

    What is the area of the parabola \(x^2=y\) bounded by the line \(y=1\)?

    Solution

    Here,

    \(x^2=y\) and line \(y=1\) cut the parabola

    \(\therefore x^2=1\)

    \(\Rightarrow x=1\) and -1

    Area \(=\int_{-1}^1 y d x\)

    Here, the area is symmetric about the \(y\)-axis, we can find the area on one side and then multiply it by 2, we will get the area,

    Area \(_1=\int_0^1 y d x\)

    Area \(_1=\int_0^1 x^2 d x\)

    \(=\left[\frac{ x ^3}{3}\right]_0^1=\frac{1}{3}\)

    This area is between \(y=x^2\) and the positive \(x\)-axis.

    To get the area of the shaded region, we have to subtract this area from the area of square i.e. \((1 \times 1)-\frac{1}{3}=\frac{2}{3}\)

    Total Area \(=2 \times \frac{2}{3}=\frac{4}{3}\) square units

     

  • Question 7
    1 / -0
    If \(\mathrm{y}=\mathrm{x}^{3}-\mathrm{ax}^{2}+48 \mathrm{x}+7\) is an increasing function for all real values of \(x\), then a lies in:
    Solution

    \(\frac{\mathrm{dy}}{\mathrm{dx}}=3 \mathrm{x}^{2}-2 \mathrm{ax}+48>0\)

    \((\because \mathrm{y}\) is an increasing function)

    \(\therefore\) Discriminant, \(\mathrm{D} \leq 0\)

    \(\Rightarrow 4 \mathrm{a}^{2}-4 \times 3 \times 48<0\)

    \(\Rightarrow \mathrm{a}^{2}-144<0\)

    \(\Rightarrow \mathrm{a} \epsilon(-12,12)\)

  • Question 8
    1 / -0

    Which one of the following is wrong statement?

    Solution

    The number of variables in dual is equal to the number of constraints in the primal and the number of variables in primal is equal to the number of constraints in the dual.

    Therefore, the primal and dual doesn't have equal number of variables.

  • Question 9
    1 / -0

    Find the principal value of \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\).

    Solution

    Given,

    \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)\)

    As we know \(\sin ^{-1}(-x)=-\sin ^{-1} x\)

    So, \(\sin ^{-1}\left(\frac{-1}{\sqrt{2}}\right)=-\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\)

    Let \(\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\theta\)

    \(\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin 45^{\circ}\)

    \(\therefore \theta=-45^{\circ}\)

  • Question 10
    1 / -0

    The value of \(\lim _{x \rightarrow 0} \frac{\cos 4 x-1}{1-\cos x}\) is:

    Solution

    We know that:

    L-Hospital Rule as:

    \(\underset{{{x \rightarrow c}}}{\lim} \frac{f(x)}{g(x)}=\underset{{{x \rightarrow c}}}{\lim} \frac{f^{\prime}(x)}{g(x)}\)

    Given that:

    \(\lim _{x \rightarrow 0} \frac{\cos 4 x-1}{1-\cos x}\)

    Let,

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\cos 4 x-1}{1-\cos x}\)....(1)

    On putting the limits in above, we get:

    \(L=\frac{0}{0}\)

    Applying L-Hospital Rule on equation (1), we get:

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\cos 4 x-1}{1-\cos x} =\underset{{{x \rightarrow 0}}}{\lim}\frac{\frac{d}{dx}(\cos 4 x-1)}{\frac{d}{dx}(1-\cos x)}\)

    \({L}=\underset{{{{x} \rightarrow 0}}}{\lim} \frac{-4 \sin 4 {x}}{\sin {x}}\)...(2)

    \(L=\frac{0}{0}\)

    Again applying L-Hospital Rule on equation (2), we get:

    \({L}=\underset{{{{x} \rightarrow 0}}}{\lim}\frac{-16 \cos 4 {x}}{\cos {x}}\)

    \(L=\frac{-16}{1}\)

    \(L=-16\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now