Given,
\(\sin 2 \theta=\cos 3 \theta, 0<\theta<\pi / 2\)
As we know that, \(\sin 2 \theta=2 \sin \theta \cos \theta\) and \(\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\)
\(\Rightarrow 2 \sin \theta \cos \theta=4 \cos ^{3} \theta-3 \cos \theta \)
\(\Rightarrow 2 \sin \theta=4 \cos ^{2} \theta-3\)
\(\Rightarrow 2 \sin \theta=4\left(1-\sin ^{2} \theta\right)-3=4-4 \sin ^{2} \theta-3\)
\(\Rightarrow 4 \sin ^{2} \theta+2 \sin \theta-1=0\)
Comparing the above equation with quadratic equation \(a x^{2}+b x+c=0, a=4, b=2\) and \(c=-1\)
Now substituting the values in the quadratic formula \(\frac{x=\left(-b \pm \sqrt{b}^{2}-4 a c\right) }{2 a}\) we get,
\(\sin \theta=\frac{-2 \pm \sqrt{-2^{2}-4(4)(-1)}}{2(4)}\)
\(=\frac{-2 \pm \sqrt{4+16}}{8}\)
\(=\frac{-2 \pm \sqrt{20}}{8}\)
\(=\frac{-1 \pm \sqrt{5}}{4}\)
Thus, \(\sin \theta=\frac{-1 \pm \sqrt{5}}{4}\)
Since, \(0<\theta<\frac{\pi}{ 2} \Rightarrow \theta\) lies between \(0^{\circ}\) to \(90^{\circ} \Rightarrow\) all ratios are positive.
\(\Rightarrow \sin \theta=\frac{-1+\sqrt{5}}{4}\)
As we know that, \(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\)
\(=1-2 \sin ^{2} \theta\)
\(\Rightarrow \cos 2 \theta=1-2\left(\frac{-1+\sqrt{5}}{4}\right)^{2}\)
\(=\frac{1+\sqrt{5}}{4}\)
\(\therefore\) The the value of \(\cos 2 \theta \) is \(\frac{1+\sqrt{5}}{4}\)