Self Studies

Mathematics Test - 15

Result Self Studies

Mathematics Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Suppose \(\sin 2 \theta=\cos 3 \theta\), here \(0<\theta<\pi / 2\) then what is the value of \(\cos 2 \theta ?\)

    Solution

    Given,

    \(\sin 2 \theta=\cos 3 \theta, 0<\theta<\pi / 2\)

    As we know that, \(\sin 2 \theta=2 \sin \theta \cos \theta\) and \(\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\)

    \(\Rightarrow 2 \sin \theta \cos \theta=4 \cos ^{3} \theta-3 \cos \theta \)

    \(\Rightarrow 2 \sin \theta=4 \cos ^{2} \theta-3\)

    \(\Rightarrow 2 \sin \theta=4\left(1-\sin ^{2} \theta\right)-3=4-4 \sin ^{2} \theta-3\)

    \(\Rightarrow 4 \sin ^{2} \theta+2 \sin \theta-1=0\)

    Comparing the above equation with quadratic equation \(a x^{2}+b x+c=0, a=4, b=2\) and \(c=-1\)

    Now substituting the values in the quadratic formula \(\frac{x=\left(-b \pm \sqrt{b}^{2}-4 a c\right) }{2 a}\) we get,

    \(\sin \theta=\frac{-2 \pm \sqrt{-2^{2}-4(4)(-1)}}{2(4)}\)

    \(=\frac{-2 \pm \sqrt{4+16}}{8}\)

    \(=\frac{-2 \pm \sqrt{20}}{8}\)

    \(=\frac{-1 \pm \sqrt{5}}{4}\)

    Thus, \(\sin \theta=\frac{-1 \pm \sqrt{5}}{4}\)

    Since, \(0<\theta<\frac{\pi}{ 2} \Rightarrow \theta\) lies between \(0^{\circ}\) to \(90^{\circ} \Rightarrow\) all ratios are positive.

    \(\Rightarrow \sin \theta=\frac{-1+\sqrt{5}}{4}\)

    As we know that, \(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\)

    \(=1-2 \sin ^{2} \theta\)

    \(\Rightarrow \cos 2 \theta=1-2\left(\frac{-1+\sqrt{5}}{4}\right)^{2}\)

    \(=\frac{1+\sqrt{5}}{4}\)

    \(\therefore\) The the value of \(\cos 2 \theta \) is \(\frac{1+\sqrt{5}}{4}\)

  • Question 2
    1 / -0

    The sum of the first 20 terms of the series \(\sqrt{5}+\sqrt{20}+\sqrt{45}+\sqrt{80}+\ldots\) is

    Solution

    The sum of the first 20 terms of the given series can be written as:

    \(\sqrt{5}+\sqrt{20}+\sqrt{45}+\sqrt{80}+\ldots\)

    \(=\sqrt{5}+2 \sqrt{5}+3 \sqrt{5}+4 \sqrt{5}+\ldots+20 \sqrt{5}\)

    \(=\sqrt{5}(1+2+\ldots+20)\)

    Sum of consecutive numbers from 1 to n:

    \(1+2+3+\ldots+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)

    \(=\sqrt{5} \times \frac{20 \times 21}{2}\)

    \(=210 \sqrt{5}\)

  • Question 3
    1 / -0

    Let the equations of two sides of a triangle be 3x2y+6=0 and 4x+5y20=0. If the orthocentre of this triangle is at (1,1), then the equation of its third side is:

    Solution

    \(\left(\mathrm{x}_1, \frac{3 \mathrm{x}_1+6}{2}\right)\)

    Since, \(\mathrm{AH}\) is perpendicular to \(\mathrm{BC}\)

    Hence, \(\mathrm{m}_{A H}: \mathrm{m}_{\mathrm{BC}}=-1\)

    \( \left(\frac{\frac{20-4 x_2}{5}-1}{x_2-1}\right) \times \frac{3}{2}=-1 \\\)

    \( \frac{15-4 x_2}{5\left(x_2-1\right)}=-\frac{2}{3} \\\)

    \( 45-12 x_2=-10 x_2+10 \\\)

    \( 2 x_2=35 \Rightarrow x_2=\frac{35}{2} \\\)

    \( \Rightarrow A\left(\frac{35}{2},-10\right)\)

    Since, \(\mathrm{BH}\) is perpendicular to \(\mathrm{CA}\).

    Hence, \(\mathrm{m}_{\mathrm{BH}} \times \mathrm{m}_{\mathrm{CA}}=-1\)

    \(\left(\frac{\frac{3 x_1}{2}+3-1}{x_1-1}\right)\left(-\frac{4}{5}\right)=-1 \\\)

    \( \frac{\left(3 x_1+4\right)}{2\left(x_1-1\right)} \times 4=5 \\\)

    \( \Rightarrow 6 x_1+8=5 x_1-5 \Rightarrow x_1=-13 \Rightarrow\left(-13, \frac{-33}{2}\right)\)

    \(\Rightarrow\) Equation of line \(\mathrm{AB}\) is

    \( y+10=\left(\frac{-\frac{33}{2}+10}{-13-35}\right)\left(x-\frac{35}{2}\right) \\\)

    \( \Rightarrow-61 y-610=-13 x+\frac{455}{2} \\\)

    \( \Rightarrow-122 y-1220=-26 x+455 \\\)

    \( \Rightarrow 26 x-122 y-1675=0\)

  • Question 4
    1 / -0

    How many words can be formed by using all the letters of the word ‘DAUGHTER’ so that the vowels always come together?

    Solution

    We have to find the total number of words formed when the vowels always come together.

    Consider the three vowels A, U, E to be one letter V then total letters are D, G, H, T, R and V. So the number of letters becomes 6

    The total number of words formed will be=number of ways the 6 letters can be arranged ×number of ways the 3 vowels can be arranged

    On putting the given values we get,

    ⇒ The total number of words formed=6!×3!

    We know \(n !=n \times(n-1) ! \times \ldots 3,2,1\)

    \(\Rightarrow\) The total number of words formed \(=6 \times 4 \times 5 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1\)

    On multiplying all the numbers we get,

    \(\Rightarrow\) The total number of words formed \(=24 \times 5 \times 6 \times 6\)

    \(\Rightarrow\) The total number of words formed=120 \(\times 36\)

    \(\Rightarrow\) The total number of words formed \(=4320\)

    The number of words formed from 'DAUGHTER' such that all vowels are together is 4320 .

  • Question 5
    1 / -0

    The equation of the locus of a point equidistant from the point A(1, 3) and B(-2, 1) is:

    Solution

    Let \(P(h, k)\) be any point on the locus which is equidistant from the point A(1, 3) and B(-2, 1).

    According to question,

    \(P A=P B\)

    \(\sqrt{(h-1)^{2}+(k-3)^{2}}=\sqrt{(h+2)^{2}+(k-1)^{2}}\)..(i)

    Squaring both side in equation (i) we get,

    \(\Rightarrow(h-1)^{2}+(k-3)^{2}=(h+2)^{2}+(k-1)^{2} \)\(\quad\quad(\because (a\pm b)^{2} = a^{2}+b^{2} \pm 2ab)\)

    \(\Rightarrow h^{2}-2 h+1+k^{2}-6 k+9=h^{2}+4 h+4+k^{2}-2 k+1\)

    \(\Rightarrow-2 h-6 k+10=4 h-2 k+5 \)

    \(\Rightarrow 6 h+4 k=5\)

    \(\therefore\)The locus of \((h,k)\) is \(6 x+4 y=5\).

  • Question 6
    1 / -0

    If \(A\) and \(B\) are two events such that \(P(A) \neq 0\) and \(P(A) \neq 1\), then \(P\left(\frac{\overline{A}}{\overline{B}}\right)\) is:

    Solution

    \(P\left(\frac{\bar{A}}{~B}\right)=\frac{P(\overline{A} \cap B)}{P(B)}\)

    \(P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})\)

    \(=\frac{P(\overline{A \cup B})}{P(B)}=\frac{1-P(A \cup B)}{P(B)}\)

  • Question 7
    1 / -0

    Solve the differential equation \(\sin x \frac{d y}{d x}+\frac{y}{\sin x}=x \sin x e^{\cot x}\)

    Solution

    \(\sin x \frac{d y}{d x}+\frac{y}{\sin x}=x \sin x e^{\cot x}\)

    \( \frac{d y}{d x}+\frac{y}{\sin ^2 x}=x \cdot e^{\cot x}\)

    It is form of \(\frac{d y}{d x}+P y=Q\)

    \( \text { I. F. }=e^{\int p d x} \)

    \( \text { I. F. }=e^{\int \operatorname{cosec}^2 x d x}=e^{-\cot x}\)

    The solution of the linear equation is given by:

    \(y(I . F .)=\int Q(I . F .) d x+c \)

    \( y e^{-\cot x}=\int x e^{\cot x} \cdot e^{-\cot x} d x+c \)

    \(y e^{-\cot x}=\int x d x+c \)

    \( y e^{-\cot x}=\frac{x^2}{2}+c\)

  • Question 8
    1 / -0

    Integrating factor of \(\left(1-x^2\right) \frac{d y}{d x}-x y=1\) is:

    Solution

    The given first-order ordinary differential equation is \(\left(1-x^2\right) \frac{d y}{d x}-x y=1\).

    Dividing both sides by \(1- x ^2\), we can get it in the standard form.

    \( \Rightarrow \frac{ dy }{ dx }+\left(\frac{- x }{1- x ^2}\right) y =\frac{1}{1- x ^2} \)

    \(\therefore P =\frac{- x }{1- x ^2} .\)

    Let's calculate \(\int Pdx\).

    \(\int P d x=\int \frac{-x}{1-x^2} d x\)

    Substituting \(1-x^2=t\), so that \(-2 x d x=d t\), we get:

    \(\Rightarrow \int Pdx =\frac{1}{2} \int \frac{1}{ t } dt\)

    Using \(\int \frac{1}{x} d x=\log x+C\) and ignoring the constant \(C\), we get:

    \(\Rightarrow \int Pdx =\frac{1}{2} \log t\)

    Back substituting \(1-x^2=t\), we get:

    \( \Rightarrow \int Pdx =\frac{1}{2} \log \left(1- x ^2\right) \)

    \( \Rightarrow \int Pdx =\log \sqrt{1- x ^2}\)

    Now, the integrating factor will be:

    \(F = e ^{\int P dx } \)

    \( \Rightarrow F = e ^{\log \sqrt{1- x ^2}} \)

    \( \Rightarrow F =\sqrt{1- x ^2} \) which is the required integrating factor.

  • Question 9
    1 / -0

    Mean of 100 observations is 50 and standard deviation is 10. If 5 is added to each observation, then what will be the new mean and new standard deviation respectively?

    Solution

    Given: Mean of 100 observations is 50 and standard deviation is 10.

    If 5 is added to each observation

    ∵ There are total 100 observations

    500 is added to sum of the observations and now dividing it by the no. of observations, we get that the mean is increased by 5.

    As we know that, the standard deviation of N observations is given by:

    \(\sigma=\sqrt{\frac{1}{N} \times \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}\) where, \(\mu\) is the arithmetic mean

    ∵ Every observation increased by 5 and mean also increased by 5 and standard deviation is the square root of the difference of mean and each observation divided by the number of observations.

    So, standard deviation will remain same.

    Thus, new mean is 55 and new standard deviation is still 10.

  • Question 10
    1 / -0

    What is the value of \(7^{\frac{1}{7}} \times 7^{\frac{1}{7^{2}}} \times 7^{\frac{1}{7^{3}}} \times \ldots\infty\) ?

    Solution

    a, ar, ar2, ... is an infinite geometric progression, then the sum of infinite geometric series is given by:

    \(S_{\infty}=\frac{a}{1-r},|r|<1\)

    \(7^{\frac{1}{7}} \times 7^{\frac{1}{7^{2}}} \times 7^{\frac{1}{7^{3}}} \times \ldots\) upto \(\infty=7^{\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^{3}}+\ldots+\infty}\)

    We know that,

    The series \(\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots+\infty\) is an infinite geometric series with the first term \(\mathrm{a}=\frac{1 } 7\) and common ratio \(\mathrm{r}=\frac1  7\).

    \(\Rightarrow \frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots+\infty=\frac{\frac{1}{7}}{1-\frac{1}{7}}=\frac{1}{6}\)

    \(\Rightarrow 7^{\frac{1}{7}} \times 7^{\frac{1}{7^{2}}} \times 7^{\frac{1}{7^{3}}} \times \ldots\) upto \(\infty=7^{\frac{1}{6}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now