Self Studies

Mathematics Test - 16

Result Self Studies

Mathematics Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let A be a 3×3 real matrix such that \(\mathrm{A}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) ; \mathrm{A}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\) and \(\mathrm{A}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\) \(\text { If } \mathrm{X}=\left(\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3\right)^{\mathrm{T}} \text { and } \mathrm{I} \text { is an identity matrix of order } 3 \text {, then the system }\)

    \((A-2 I) X=\left(\begin{array}{l}4 \\ 1 \\ 1\end{array}\right)\)

    Solution


  • Question 2
    1 / -0

    If \(u_{1}=u_{2}=1\) and \(u_{n+2}=u_{n+1}+u_{n} \cdot n \geq 1\). Then use mathematical induction to show that \(u_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]\) for all \(n>1\).

    Solution

    Given:

    \(u_{1}=1, u_{2}=1, u_{n+2}=u_{n+1}+u_{n} \cdot n \geq 1\)

    \(u_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]\)

    \(\therefore u_{2}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right]\)

    \(=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)\)

    \(=\frac{1}{\sqrt{5}}(1 \times \sqrt{5})=\) Thus, \(u_{n}\) is true for \(n=2 \quad\) (as given \(\left.u_{2}=1\right)\)

    Let it be true for \(n=k>2\). Then \(u_{k}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]\)

    Consider that \(u_{k+1}=u_{k}+u_{k-1}\) [Using \(\left.u_{n+2}=u_{n+1}+u_{n}\right]\)

    \(\therefore u_{k+1}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right]+\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right] \)

    \(=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k}+\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\right] \)

    \(=\left[\left(\frac{1-\sqrt{5}}{2}\right)^{k}+\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\right] \)

    \(=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\left\{\frac{1+\sqrt{5}}{2}+1\right\}\right] \)

    \(=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\left\{\frac{6+2 \sqrt{5}}{4}\right\}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right. \)

    \(=\left[\left\{\frac{6-2 \sqrt{5}}{4}\right\}\right] \)

    \(=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\left(\frac{\sqrt{5}+1}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right.\)

    \(=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}\left(\frac{\sqrt{5}+1}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}\right. \)

    \(=\left[\left(\frac{\sqrt{5}-1}{2}\right)^{2}\right]\)

    So, \(u_{k+1}\) is also true.

    So, by the principle of mathematical induction \(u_{n}\) is true \(\forall n>1\)

  • Question 3
    1 / -0

    Find the equation of the normal to the curve \(y=3 x^{2}+1\), which passes through \((2,13)\).

    Solution

    The slope of the tangent to the curve \(=\frac{d y}{d x}\)

    The slope of normal to the curve \(=\frac{-1}{\left(\frac{ dy }{ dx }\right)}\)

    Point-slope is the general form: \(y-y_{1}=m\left(x-x_{1}\right)\), Where \(m=\) slope

    Here, \(y=3 x^{2}+1\)

    \(\frac{ dy }{ dx }=6 x\)

    \(\left.\frac{ dy }{ dx }\right|_{ x =2}=12\)

    Slope of normal to the curve \(=\frac{-1}{\left(\frac{d y}{d x}\right)}=\frac{-1}{12}\)

    Equation of normal to curve passing through \((2,13)\) is:

    \(y-13=\frac{-1}{12}(x-2)\)

    \(\Rightarrow 12 y-156=-x+2\)

    \(\Rightarrow x+12 y-158=0\)

  • Question 4
    1 / -0

    Find the vector equation of the line passing through the point with position vector \(\hat{i}-2 \hat{j}+5 \hat{k}\) and perpendicular to the plane \(\vec{r} \cdot(2 \hat{i}-3 \hat{j}-\hat{k})=0\).

    Solution

    The vector equation of a line passing through a point with position vector \(\overrightarrow{r_{1}}\) and parallel to \(\vec{m}\) is given by:

    \(\vec{r}=\overrightarrow{r_{1}}+\lambda \vec{m}\) where, \(\lambda\) is a scalar

    Given here:

    Equation of plane is \(\vec{r} \cdot(2 \hat{i}-3 \hat{j}-\hat{k})=0\) and the line is perpendicular to the given plane.

    It is given that, the required line is perpendicular to the plane \(\vec{r} \cdot(2 \hat{i}-3 \hat{j}-\hat{k})=0\)

    i.e., The required line is parallel to the vector \(\vec{m}=2 \hat{i}-3 \hat{j}-\hat{k}\)

    The line passes through the point whose position vector is \(\hat{i}-2 \hat{j}+5 \hat{k}\) i.e., \(\overrightarrow{r_{1}}=\hat{i}-2 \hat{j}+5 \hat{k}\)

    As we know that, the vector equation of a line passing through a point with position vector \(\overrightarrow{r_{1}}\) and parallel to \(\vec{m}\) is given by:

    \(\vec{r}=\overrightarrow{r_{1}}+\lambda \vec{m}\)

    So, the required equation of line is:

    \(\vec{r}=(\hat{i}-2 \hat{j}+5 \hat{k})+\lambda \cdot(2 \hat{i}-3 \hat{j}-\hat{k})\)

  • Question 5
    1 / -0

    If \(f(x)=\left|\begin{array}{ccc}x^3 & 2 x^2+1 & 1+3 x \\ 3 x^2+2 & 2 x & x^3+6 \\ x^3-x & 4 & x^2-2\end{array}\right|\) for all \(x \in \mathbb{R}\), then \(2 f(0)+f^{\prime}(0)\) is equal to:

    Solution

  • Question 6
    1 / -0

    If \(\omega\) is a cube root of unity, then a root of the equation is:

    \(\left|\begin{array}{ccc}x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega\end{array}\right|=0\)

    Solution

    Concept:

    If \(\omega\) is the cube root of unity, i.e., \(\omega^3=1\). then \(1+\omega+\omega^2=0\)

    \(\omega^4=\omega^3 \omega=\omega\left[\because \omega^3=1\right]\)

    Given,

    \(\left|\begin{array}{ccc}x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega\end{array}\right|=0\)

    \(C_1^{\prime}=C_1+C_2+C_3\)

    \(\left|\begin{array}{ccc}x+1+\omega+\omega^2 & \omega & \omega^2 \\ x+1+\omega+\omega^2 & x+\omega^2 & 1 \\ x+1+\omega+\omega^2 & 1 & x+\omega\end{array}\right|=0\)

    \(\left|\begin{array}{ccc}x & \omega & \omega^2 \\ x & x+\omega^2 & 1 \\ x & 1 & x+\omega\end{array}\right|=0 \quad\left(\because 1+\omega+\omega^2=0\right)\)

    \(R_2^{\prime}=R_2-R_1\)

    \(R_3^{\prime}=R_3-R_1\)

    \(\left|\begin{array}{ccc}x & \omega & \omega^2 \\ 0 & x+\omega^2-\omega & 1-\omega^2 \\ 0 & 1-\omega & x+\omega-\omega^2\end{array}\right|=0\)

    Expanding along first column:

    \(x\left[\left(x+\omega^2-\omega\right)\left(x+\omega-\omega^2\right)-(1-\omega)\left(1-\omega^2\right)\right]\)

    \(x\left[x^2+\omega x-\omega^2 x+\omega^2 x+\omega^3-\omega^4-\omega x-\omega^2+\omega^3-1+\omega^2+\omega-\omega^3\right]\)

    \(x^3=0\left(\because \omega^3=1\right.\) and \(\left.\omega^4=\omega^3 \omega=\omega\right)\)

    \(\therefore x=0\)

  • Question 7
    1 / -0
    The center and the radius of the sphere \(|2 \overrightarrow{\mathrm{r}}+(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})|=4\) are:
    Solution

    The given equation of the sphere is \(|2 \overrightarrow{\mathrm{r}}+(3 \overrightarrow{\mathrm{i}}-\overrightarrow{\mathrm{j}}+4 \overrightarrow{\mathrm{k}})|=4\)

    Which can be re-written as \(\left|\overrightarrow{\mathrm{r}}-\left(-\frac{3}{2} \overrightarrow{\mathrm{i}}+\frac{1}{2} \overrightarrow{\mathrm{j}}-2 \overrightarrow{\mathrm{k}}\right)\right|=2\) (dividing the \(\mathrm{LHS}\) and RHS by 2).

    Comparing this with the general equation \(|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{c}}|=\mathrm{a},\) we can say that \(\overrightarrow{\mathrm{c}}=-\frac{3}{2} \overrightarrow{\mathrm{i}}+\frac{1}{2} \overrightarrow{\mathrm{j}}-2 \overrightarrow{\mathrm{k}}\) and \(\mathrm{a}=2\)

    It means that the center is \(\left(\frac{-3}{2}, \frac{1}{2},-2\right)\) and the radius is 2 .

  • Question 8
    1 / -0

    \(P\) and \(Q\) are considering to apply for a job. The probability that \(P\) applies for the job is \(\frac{1}{4}\), the probability that \(P\) applies for the job given that \(Q\) applies for the job is \(\frac{1}{2}\), and the probability that \(Q\) applies for the job given that \(P\) applies for the job is \(\frac{1}{3}\). Then the probability that \(P\) does not apply for the job given that \(Q\) does not apply for the job is:

    Solution

    Given:

    \(p(P)=\frac{1}{4}\)

    \(P\left(\frac{P}{Q}\right)=\frac{1}{2}, P\left(\frac{Q}{P}\right)=\frac{1}{3}\)

    \(P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}\)

    \(P\left(\frac{Q}{P}\right)=\frac{P(P \cap Q)}{P(P)},\)

    \(\frac{1}{3}=\frac{P(P \cap Q)}{\frac{1}{4}},\)

    \(P(P \cap Q)=\frac{1}{12}\)

    \(\text { Also, } P\left(\frac{P}{Q}\right)=\frac{P(P \cap Q)}{P(Q)},\)

    \(\frac{1}{2}=\frac{\frac{1}{12}}{P(Q)},\)

    \(P(Q)=\frac{1}{6}\)

    Required probability, \(P\left(\frac{P^{\prime}}{Q^{\prime}}\right)=\frac{P\left(P^{\prime} \cap Q^{\prime}\right)}{P\left(Q^{\prime}\right)}\)

    \(=\frac{P(P \cup Q)^{\prime}}{1-P(Q)}=\frac{1-P(P \cup Q)}{1-P(Q)}\)

    \(=\frac{1-(P(P)+P(Q)-P(P \cap Q))}{1-P(Q)}\)

    \(=\frac{1-\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{12}\right)}{1-\frac{1}{6}}\)

    \(=\frac{\frac{8}{12}}{\frac{5}{6}}=\frac{4}{5}\)

  • Question 9
    1 / -0

    Let two vertices of a triangle \(\mathrm{ABC}\) be \((2,4,6)\) and \((0,-2,-5)\), and its centroid be \((2,1,-1)\). If the image of the third vertex in the plane \(x+2 y+4 z=11\) is \((\alpha, \beta, \gamma)\), then \(\alpha \beta+\beta \gamma+\gamma \alpha\) is equal to :

    Solution

    Given Two vertices of Triangle \(A(2,4,6)\) and \(B(0,-2,-5)\) and if centroid \(\mathrm{G}(2,1,-1)\)

    Let Third vertices be ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) )

    Now \(\frac{2+0+x}{3}=2, \frac{4-2+y}{3}=1, \frac{6-5+z}{3}=-1\)

    \(\mathrm{x}=4, \mathrm{y}=1, \quad \mathrm{z}=-1\)

    Third vertices \(C(4,1,-4)\\)

    Now, Image of vertices \(\mathrm{C}(4,1,-4)\) in the given plane is \(\mathrm{D}(\alpha, \beta, \gamma)\)

    Now

    \(\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=-2 \frac{(4+2-16-11)}{1+4+16} \\\)

    \(\frac{\alpha-4}{1}=\frac{\beta-1}{2}=\frac{\gamma+4}{4}=\frac{42}{21} \Rightarrow 2 \\\)

    \( \alpha=6, \beta=5, \gamma=4 \\\)

    \( \text { Then } \alpha \beta+\beta \gamma+\gamma \alpha \\\)

    \( =(6 \times 5)+(5 \times 4)+(4 \times 6) \\\)

    \( =30+20+24 \\\)

    \( =74\)

  • Question 10
    1 / -0

    \(\text { If } \lim _{n \rightarrow \infty}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0 \text {, then } 8(\alpha+\beta) \text { is equal to: }\)

    Solution

    \(\lim _{n \rightarrow a}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)

    [ This limit will be zero when \(\alpha<0\) as when \(\alpha>0\) then overall limit will be \(\infty\).]

    \( \Rightarrow \lim _{n \rightarrow \alpha} \frac{\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)\left(\sqrt{n^2-n-1}-(n \alpha+\beta)\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)

    \( \Rightarrow \lim _{n \rightarrow \alpha} \frac{\left(n^2-n-1\right)-(n \alpha+\beta)^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)

    \( \Rightarrow \lim _{n \rightarrow \alpha} \frac{n^2-n-1-n^2 \alpha^2-2 n \alpha \beta-\beta^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)

    \(\Rightarrow \lim _{n \rightarrow \alpha} \frac{n^2\left(1-\alpha^2\right)-n(1+2 \alpha \beta)-\left(1+\beta^2\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}\)

    Here power of " \(\mathrm{n}\) " in the numerator is 2 and power of " \(\mathrm{n}\) " in the denominator is 1 .

    To get the value of limit equal to zero power of " \(n\) " should be equal in both numerator and denominator, otherwise value of limit will be infinite \((\infty)\).

    \(\therefore\) Coefficient of \(\mathrm{n}^2\) should be 0 in this case.

    \( \therefore 1-\alpha^2=0 \\\)

    \( \Rightarrow \alpha= \pm 1\)

    But \(\alpha\) should be \(<0\)

    \(\therefore \alpha=+1 \text { not possible } \\\)

    \( \therefore \alpha=-1 \\\)

    \( \Rightarrow \lim _{n \rightarrow \alpha} \frac{0-n(1+2 \alpha \beta)-(1+\beta)}{\left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}\right]}=0\)

    Divide numerator and denominator by \(\mathrm{n}\ then we get,\)

    \(\Rightarrow \lim _{n \rightarrow \alpha} \frac{-(1+2 \alpha \beta)-\frac{(1+\beta)}{n}}{\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}}=0 \\\)

    \( \Rightarrow \frac{-(1+2 \alpha \beta)-0}{\sqrt{1-0-0}-\alpha-0}=0 \\\)

    \( \Rightarrow \frac{-(1+2 \alpha \beta)}{1-\alpha}=0 \\\)

    \( \Rightarrow-(1+2 \alpha \beta)=0 \\\)

    \( \Rightarrow 1+2 \alpha \beta=0 \\\)

    \( \Rightarrow 2 \alpha \beta=-1 \\\)

    \( \Rightarrow \beta=-\frac{1}{2 \alpha}=-\frac{1}{2(-1)}=\frac{1}{2} \\\)

    \( \therefore 8(\alpha+\beta) \\\)

    \( =8\left(-1+\frac{1}{2}\right) \\\)

    \( =8 \times-\frac{1}{2} \\\)

    \( =-4\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now