\(\lim _{n \rightarrow a}\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)=0\)
[ This limit will be zero when \(\alpha<0\) as when \(\alpha>0\) then overall limit will be \(\infty\).]
\( \Rightarrow \lim _{n \rightarrow \alpha} \frac{\left(\sqrt{n^2-n-1}+n \alpha+\beta\right)\left(\sqrt{n^2-n-1}-(n \alpha+\beta)\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)
\( \Rightarrow \lim _{n \rightarrow \alpha} \frac{\left(n^2-n-1\right)-(n \alpha+\beta)^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)
\( \Rightarrow \lim _{n \rightarrow \alpha} \frac{n^2-n-1-n^2 \alpha^2-2 n \alpha \beta-\beta^2}{\sqrt{n^2-n-1}-(n \alpha+\beta)}=0 \\\)
\(\Rightarrow \lim _{n \rightarrow \alpha} \frac{n^2\left(1-\alpha^2\right)-n(1+2 \alpha \beta)-\left(1+\beta^2\right)}{\sqrt{n^2-n-1}-(n \alpha+\beta)}\)
Here power of " \(\mathrm{n}\) " in the numerator is 2 and power of " \(\mathrm{n}\) " in the denominator is 1 .
To get the value of limit equal to zero power of " \(n\) " should be equal in both numerator and denominator, otherwise value of limit will be infinite \((\infty)\).
\(\therefore\) Coefficient of \(\mathrm{n}^2\) should be 0 in this case.
\( \therefore 1-\alpha^2=0 \\\)
\( \Rightarrow \alpha= \pm 1\)
But \(\alpha\) should be \(<0\)
\(\therefore \alpha=+1 \text { not possible } \\\)
\( \therefore \alpha=-1 \\\)
\( \Rightarrow \lim _{n \rightarrow \alpha} \frac{0-n(1+2 \alpha \beta)-(1+\beta)}{\left[\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}\right]}=0\)
Divide numerator and denominator by \(\mathrm{n}\ then we get,\)
\(\Rightarrow \lim _{n \rightarrow \alpha} \frac{-(1+2 \alpha \beta)-\frac{(1+\beta)}{n}}{\sqrt{1-\frac{1}{n}-\frac{1}{n^2}}-\alpha-\frac{\beta}{n}}=0 \\\)
\( \Rightarrow \frac{-(1+2 \alpha \beta)-0}{\sqrt{1-0-0}-\alpha-0}=0 \\\)
\( \Rightarrow \frac{-(1+2 \alpha \beta)}{1-\alpha}=0 \\\)
\( \Rightarrow-(1+2 \alpha \beta)=0 \\\)
\( \Rightarrow 1+2 \alpha \beta=0 \\\)
\( \Rightarrow 2 \alpha \beta=-1 \\\)
\( \Rightarrow \beta=-\frac{1}{2 \alpha}=-\frac{1}{2(-1)}=\frac{1}{2} \\\)
\( \therefore 8(\alpha+\beta) \\\)
\( =8\left(-1+\frac{1}{2}\right) \\\)
\( =8 \times-\frac{1}{2} \\\)
\( =-4\)