Self Studies

Mathematics Test - 17

Result Self Studies

Mathematics Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the value of \(x\) and \(y\) such that \(\left[\begin{array}{l}x-y \\ x+y\end{array}\right]=\left[\begin{array}{c}2 \\ 16\end{array}\right]\).

    Solution
    Given,
    \(\left[\begin{array}{l}
    x-y \\
    x+y
    \end{array}\right]=\left[\begin{array}{c}
    2 \\
    16
    \end{array}\right]\)
    As we know,
    If two matrices and are said to be equal, then
    Order of matrix \(A=\) Order of matrix \(B\)
    Corresponding element of matrix \(A=\) Corresponding element of \(B\)
    So,
    \( x-y=2\)...(1)
    \( x+y=16\)...(2)
    On adding equation (1) and (2) we get,
    \(2x=18\)
    \(\Rightarrow x=9\)
    Substituting \(x =9\) in equation (2) we get
    \(9+y=16\)
    \(\Rightarrow y=16-9\)
    \(\Rightarrow y=7\)
    So, the value of \(x=9\) and \(y=7\)
  • Question 2
    1 / -0

    General solution of \(\left(x^2+y^2\right) d x-2 x y d y=0\) is:

    Solution

    \( \left(x^2+y^2\right) d x=2 x y d y \)

    \(\Rightarrow \frac{d y }{d x}=\frac{\left(x^2+y^2\right) }{ 2 x y} \) is homogeneous.

    Put \(y=v x\)

    \(\Rightarrow \frac{d y }{d x} = v + x\frac {dv }{dx} \)

    \( \Rightarrow v+x \frac{d v}{d x}=\frac{x^2+v^2 x^2}{2 v x^2}=\frac{x^2\left(1+v^2\right)}{2 v x^2} \)

    \( \Rightarrow x \frac{d v}{d x}=\frac{1+v^2}{2 v}-v=\frac{1-v^2}{2 v}\)

    \( \Rightarrow \frac{2 v}{1-v^2} d v=\frac{1}{x} d x\)

    \( \Rightarrow-\log \left(1-v^2\right)=\log x+\log c \)

    \( \Rightarrow \log \left[\frac {1 }{\left(1-v^2\right)}\right]=\log x+\log c \)

    \( \Rightarrow\left[\frac {1 }{\left(1-v^2\right)}\right]=c x \)

    \( \Rightarrow\left[\frac {1 }{\left(1-\frac{y^2 } {x^2}\right)}\right]=c x \)

    \( \Rightarrow\left[\frac{x^2 }{\left(x^2-y^2\right)}\right]=c x\)

    \(\Rightarrow x^2=c x\left(x^2-y^2\right)\) is the general solution of the differential equation.

  • Question 3
    1 / -0

    The derivative of \(\cos ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) with respect to \(\sqrt{1-x^{2}}\) is:

    Solution

    Let, \(v=\cos ^{-1}\left(\frac{1}{2 x^{2}-1}\right)\) and \(u=\sqrt{1-x^{2}}\)

    Substituting \(x=\cos \theta\), 

    \(\Rightarrow \theta=\cos ^{-1} x\),  we get:

    \(v=\cos^{-1}\left(\frac{1}{2 \cos ^{2} \theta-1}\right)\)

    \(=\cos ^{-1}\left(\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta}\right)\)

    \(=\cos ^{-1}\left(\frac{1}{\cos 2 \theta}\right)\)

    \(=\cos ^{-1}(\sec 2 \theta)\)

    \(=\cos^{-1}\left(\cos \left(90^{\circ}-2 \theta\right)\right)\)

    \(=90^{\circ}-\) \(2 \theta\).

    And, \(u=\sqrt{1-x^{2}}\)

    \(=\sqrt{1-\cos ^{2} \theta}\)

    \(=\sqrt{\sin ^{2} \theta}=\sin \theta\)

    Now, \(\frac{d v}{d \theta}=-2\) 

    And, \(\frac{d u}{d \theta}=\cos \theta\)

    \(\therefore \frac{\mathrm{dv}}{\mathrm{du}} =\frac{\mathrm{dv}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{d} u}\)

    \(=\frac{-2}{\cos \theta}=\frac{-2}{x}\)

  • Question 4
    1 / -0

    The area of the region bounded by the curve \(y=\sqrt{16-x^2}\) and \(x\)-axis is:

    Solution

    \(\therefore\) The required area is given by:

    \(A = \)

    \(\int_{-4}^4\left(\sqrt{16-x^2}\right) d x\left[\because \int \sqrt{a^2-x^2} d x=\frac{x \sqrt{a^2-x^2}}{2}+\frac{a^2}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right] \)

    \(=2 \int_0^4\left(\sqrt{4^2-x^2}\right) d x \)

    \(=2\left[\frac{x \sqrt{4^2-x^2}}{2}+\frac{4^2}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right]_0^4 \)

    \(=2\left(0+\frac{8 \pi}{2}-0-0\right) \)

    \(=8 \pi \) sq units. 

    \(\therefore\) The area of the region bounded by the curve \(y =\sqrt{16- x ^2}\) and the \(x\)-axis is \(8 \pi\) sq units.

  • Question 5
    1 / -0

    If \(-2<2 x-1<2\) then the value of \(x\) lies in the interval:

    Solution

    Given,

    \(-2<2 x-1<2\)

    \(\Rightarrow-2+1<2 x<2+1 \)

    \(\Rightarrow-1<2 x<3 \)

    \(\Rightarrow \frac{-1}{2}

    \(\Rightarrow x \in\left(\frac{-1}{2}, \frac{3}{2}\right)\)

  • Question 6
    1 / -0

    Consider the function \(f: R \rightarrow\{0,1\}\) such that:

    \(f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.\).

    Which one of the following is correct?

    Solution

    Given function:

    \(f:\mathrm{R} \rightarrow\{0,1\}\) such that \(f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.\)

    Let f(x) be any function.

    f (x) is onto if range of f (x) = Codomain

    Codomain = {0, 1}

    Since, on taking a straight line parallel to the x-axis, the group of given function intersect it at many points.

    \(\Rightarrow f(x)\) is many-one.

    Range of function is \(\{0,1\}\)

    As range of \(f(x)=\) Codomain

    \(\Rightarrow f(x)\) is onto.

    Therefore, \(f(x)\) is many-one onto.

  • Question 7
    1 / -0

    The maximum value of \(P=x+3 y\) such that \(2 x+y \leq 20, x+2 y \leq\) \(20, x \geq 0, y \geq 0\), is:

    Solution

    \(2 x+y \leq 20, x+2 y \leq\) \(20, x \geq 0, y \geq 0\)

    The points in the feasible region are,

    \(\mathrm{A}(0,0), \mathrm{B}(0,10), \mathrm{C}\left(\frac{20}{3}, \frac{10}{3}\right)\) and \(\mathrm{D}(10,0)\)

    Objective function is \((P=x+3 y)\)

    At point \(A, P=0+3(0)=0\)

    At point \(\mathrm{B}, \mathrm{P}=0+3(10)=30\)

    At point \(\mathrm{C}, \mathrm{P}=\frac{20}{3}+\frac{3(10)}{3}=\frac{50}{3}\)

    At point \(D, P=10+3(0)=10\)

    \(\therefore\) Maximum value of \(P=30\) at \(B(0,10)\).

  • Question 8
    1 / -0

    The mean and standard deviation of a set of values are 5 and 2 respectively. If 5 is added to each value, then what is the coefficient of variation for the new set of values?

    Solution

    Given:

    Mean = 5 and Standard deviation = 2

    If 5 is added to each value,

    We know that adding a constant to each value Mean will be changed by adding a constant value and standard deviation remain the same.

    Therefore, Mean = 5 + 5 = 10

    Standard deviation will not change.

    Now,

    Coefficient of variation \(=\frac{\text { standard deviaiton }}{\text { Mean }} \times 100=\frac{2}{10} \times 100\)

    ∴ Coefficient of variation = 20

  • Question 9
    1 / -0

    Two dice A and B are rolled. Let numbers obtained on A and B be α and β respectively. If the variance of αβ is pq, where p and q are co-prime, then the sum of the positive divisior of p is equal to:

    Solution
     αβ  Case  P
     5  (6,1)  1/36
     4  (6,2) (5,1)  2/36
     3  (6,3) (5,2) (4,1)  3/36
     2  (6,4) (5,3) (4,3) (3,1)  4/36
     1  (6,5) (5,4) (4,3) (3,2) (2,1)  5/36
     0  (6,6) (5,5) . . . . . . (1,1)  6/36
     -1   - - - - -  5/36
     -2  - - - - -  4/36
     -3  - - - - -  3/36
     -4  (2,6) (1,5)  2/36
     -5  (1,6)  1/36

    \(\sum\left(\mathrm{x}^2\right)=\sum \mathrm{x}^2 \mathrm{P}(\mathrm{x})=2\left[\frac{25}{36}+\frac{32}{36}+\frac{27}{36}+\frac{16}{36}+\frac{5}{36}\right] \\\)

    \( =\frac{105}{18}=\frac{35}{6} \\\)

    \( \mu=\sum(\mathrm{x})=0 \text { as data is symmetric } \\\)

    \( \sigma^2=\sum\left(\mathrm{x}^2\right)=\sum \mathrm{x}^2 \mathrm{P}(\mathrm{x})=\frac{35}{6} \mathrm{P}=35=5 \times 7 \\\)

    Sum of divisors = \(\left(5^0+5^1\right)\left(7^0+7^1\right)=6 \times 8=48\)

  • Question 10
    1 / -0

    A passenger wants to travel from Delhi to Mangalore by train. There is no direct train from Delhi to Mangalore, but there are trains from Delhi to Mumbai and from Mumbai to Mangalore. Actually, there are four trains from Delhi to Mumbai and three trains from Mumbai to Bangalore. In how many ways can he travel from Delhi to Mangalore?

    Solution

    The passenger can go from Delhi to Mumbai in 4C1 = 4 ways and from Mumbai to Mangalore in3C1 = 3 ways.

    Thus, the number of ways to travel from Delhi to Mangalore = 4 × 3 = 12

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now