Self Studies

Mathematics Test - 18

Result Self Studies

Mathematics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(\omega\) is a cube root of unity, then the value of \(\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)\) is:

    Solution

    Cube root of unity \(=1, \omega, \omega^{2}\)

    Properties of the cube root of unity:

    (i) \(1, \omega, \omega^{2}\) are in G.P. \(\quad \quad \ldots (1)\)

    (ii) \(1+\omega+\omega^{2}=0 \quad \quad \quad \ldots (2)\)

    (iii) \(\omega^{3}=1 \quad\quad \quad \quad \quad \quad \ \ldots (3)\)

    Given, \(\omega\) is a cube root of unity.

    And, \(\left(1-\omega+\omega^{2}\right)\left(1+\omega-\omega^{2}\right)\)

    \(\Rightarrow\left(1+\omega^{2}-\omega\right)\left(1+\omega-\omega^{2}\right) \quad\quad \ldots . (\mathrm{A})\)

    From equation (2),

    \(1+\omega^{2}=-\omega\) and \(1+\omega=-\omega^{2}\)

    Put in equation \((\mathrm{A})\),

    \(=(-\omega-\omega)\left(-\omega^{2}-\omega^{2}\right)\)

    \(=(-2 \omega)\left(-2 \omega^{2}\right)\)

    \(= 4 \omega^{3}\)

    Using equation (3),

    \(\Rightarrow 4 \times 1=4\)

  • Question 2
    1 / -0

    If \(\sin ^{-1} x+\sin ^{-1} y=\frac{5 \pi}{6}\), then what is the value of \(\cos ^{-1} x+\cos ^{-1} y\)?

    Solution

    \(\sin ^{-1} x+\sin ^{-1} y=\frac{5 \pi}{6}\)

    We know that:

    \(\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\)

    \(\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\)

    Let, \(\cos ^{-1} x+\cos ^{-1} y=a\)

    Adding the two equation we get,

    \(\left(\sin ^{-1} x+\cos ^{-1} x\right)+\left(\sin ^{-1} y+\cos ^{-1} y\right)=\frac{5 \pi}{6}+a\)

    \(\Rightarrow \frac{\pi}{2}+\frac{\pi}{2}=\frac{5 \pi}{6}+a\)

    \(\Rightarrow \pi-\frac{5 \pi}{6}=a \Rightarrow a=\frac{\pi}{6}\)

    So, \(\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{6}\)

  • Question 3
    1 / -0
    \(\int_{1}^{2} \frac{1}{x^{2}+x} d x\) is equal to:
    Solution
    Let \(I=\int_{1}^{2} \frac{1}{x^{2}+x} d x\)
    \(=\int_{1}^{2} \frac{1}{x(x+1)} d x\)
    \(=\int_{1}^{2} \frac{(x+1)-x}{x(x+1)} d x\)
    \(=\int_{1}^{2}\left[\frac{(x+1)}{x(x+1)}-\frac{x}{x(x+1)}\right] d x\)
    \(=\int_{1}^{2}\left[\frac{1}{x}-\frac{1}{x+1}\right] d x\)
    \(=[\log x-\log (x+1)]_{1}^{2}\)
    \(=(\log 2-\log 3)-(\log 1-\log 2)\)
    \(=\log 2-\log 3-0+\log 2\)
    \(=2 \log 2-\log 3\)
    \(=\log 2^{2}-\log 3 \quad (\because n \log m=\log m^n)\)
    \(=\log 4-\log 3\)
    \(=\log \frac{4}{3} \quad(\because \log m-\log n=\log (\frac{m}{ n})\)
  • Question 4
    1 / -0

    An organization awarded 48 medals in event ' A ', 25 in event ' B' and 18 in event ' C '. If these medals went to total 60 men and only five men got medals in all the three events, then, how many received medals in exactly two of three events ?

    Solution

    |A|=48
    |B|=25
    |C|=18
    |ABC|=60 [Total] 
    |ABC|=5

    |ABC|=|A||AB|+|ABC|
    |AB|=48+25+18+560
    =36
    No. of men who received exactly 2 medals
    |AB|3|ABC|
    =3615
    =21
  • Question 5
    1 / -0

    Evaluate the integral \(\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x\).

    Solution

    Let \(e^{x}=t\)\(\quad \dots (1)\)

    Differentiating w.r.t. \(x\), we get

    \(e^{x}=\frac{d t}{dx}\)

    \(e^{x} d x=d t\)

    New limit to \(eq^{n}(1)\)

    Now, \(x=0 \Rightarrow t=1\)

    \(x=1 \Rightarrow t=e\)

    \(\therefore \int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x =\int_{1}^{e} \frac{d t}{1+t^{2}} ~~~~~\quad\quad{\left[\because \int \frac{d t}{1+t^{2}}=\tan ^{-1} t\right] } \)

    \(=\left[\tan ^{-1} t\right]_{1}^{e} ~~~~~~~~~~{\left[\because \tan \frac{\pi}{4}=1\right] } \)

    Put the limit,

    \(=\left[\tan ^{-1} e-\tan ^{-1} 1\right] \)

    \(={\left[\tan ^{-1} e-\frac{\pi}{4}\right.}]\)

    \(\therefore \int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x=\tan ^{-1} e-\frac{\pi}{4}\)

  • Question 6
    1 / -0

    If given constraints are \(5 x+4 y \geq 2, x \leq 6, y \leq 7\), then the maximum value of the function \(z=x+2 y\) is:

    Solution

    The objective function, \(5 x+4 y \geq 2, x \leq 6, y \leq 7\)

    \(\Rightarrow \frac{x}{\frac{2}{5}}+\frac{y}{\frac{1}{2}}=1\)

    At point \(\mathrm{A}\left(\frac{2}{5}, 0\right), \mathrm{z}=\frac{2}{5}+0=\frac{2}{5}\)

    At point \(\mathrm{B}(6,0), \mathrm{z}=6+0=6\)

    At point \(C(6,7), z=6+14=20\)

    At point \(\mathrm{D}(0,7), z=0+2(7)=14\)

    At point \(\mathrm{E}\left(0, \frac{1}{2}\right), \mathrm{z}=0+2\left(\frac{1}{2}\right)=1\)

    \(\therefore\) The maximum value of \(\mathrm{z}\) is 20 .

  • Question 7
    1 / -0

    In a group of 100 persons 75 speak English and 40 speak Hindi. Each person speaks at least one of the two languages. If the number of persons, who speak only English is α and the number of persons who speak only Hindi is β, then the eccentricity of the ellipse 25β2x2+α2y2 )=α2β2 is :

    Solution

  • Question 8
    1 / -0

    Let \(\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}\) and \(\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}\) be three given vectors. If \(\vec{r}\) is a vector such that \(\vec{r} \times \vec{a}=\vec{c} \times \vec{a}\) and \(\vec{r} \cdot \vec{b}=0\), then \(\mid \vec{r}|\) is equal to :

    Solution

    \(\begin{aligned} & \vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k} \\ & \vec{b}=\hat{i}+\hat{k} \\ & \vec{c}=\hat{i}+2 \hat{j}-3 \hat{k} \\ & \vec{r} \times \vec{a}=\vec{c} \times \vec{a} \Rightarrow(\vec{r}-\vec{c}) \times \vec{a}=0 \\ & \therefore \vec{r}=\vec{c}+\lambda \vec{a} \\ & \vec{r} \cdot \vec{b}=0 \Rightarrow \vec{c} \cdot \vec{b}+\lambda \vec{b} \cdot \vec{a}=0 \\ & -2+\lambda(7)=0 \Rightarrow \lambda=\frac{2}{7} \\ & \therefore \vec{r}=\vec{c}+2 \frac{\vec{a}}{7}=\frac{1}{7}(11 \hat{i}-11 \hat{k}) \\ & |\vec{r}|=\frac{11 \sqrt{2}}{7}\end{aligned}\)

  • Question 9
    1 / -0

    A unit vector which is perpendicular to the vector \(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}\) and is coplanar with the vectors \(\hat{i}+\hat{j}-\hat{k}\) and \(2 \hat{i}+2 \hat{j}-\hat{k}\) is:

    Solution

    Let \(\hat{x_i}+y_j+z \hat{k}\) be the required unit vector.

    Since \(\hat{a}\) is perpendicular to \((2 \hat{i}-\hat{j}+2 \hat{k})\).

    \(\therefore 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=0 \ldots \text {..... (i) }\)

    Since vector \(x_i+y \hat{j}+z \hat{k}\) is coplanar with the vector \(\hat{i}+\hat{j}-\hat{k}\) and

    \( 2 \hat{i}+2 \hat{j}-\hat{k} \\\)

    \( \therefore x_{\hat{i}}+y \hat{j}+z \hat{k}=p(\hat{i}+\hat{j}-\hat{k})+q(2 \hat{i}+2 \hat{j}-\hat{k})\)

    where \(p\) and \(q\) are some scalars.

    \(\Rightarrow x_i^{\hat{i}}+y \hat{j}+z \hat{k}=(p+2 q) \hat{i}+(p+2 q) \hat{j}-(p+q) \hat{k} \\\)

    \(\Rightarrow x=p+2 q, y=p+2 q, z=-p-q\)

    Now from equation (i),

    \( 2 p+4 q-p-2 q-2 p-2 q=0 \\\)

    \( \Rightarrow-p=0 \Rightarrow p=0 \\\)

    \( \therefore x=2 q, y=2 q, z=-q\)

    Since vector \(x_{\hat{i}}+y \hat{j}+z \hat{k}\) is a unit vector, therefore

    \( |\hat{x}+\hat{y}+z \hat{k}|=1 \\\)

    \( \Rightarrow \sqrt{x^2+y^2+z^2}=1 \\\)

    \( \Rightarrow x^2+y^2+z^2=1 \\\)

    \( \Rightarrow 4 q^2+4 q^2+q^2=1 \\\)

    \( \Rightarrow 9 q^2=1 \Rightarrow q= \pm \frac{1}{3}\)

    When \(\mathrm{q}=\frac{1}{3}\), then \(\mathrm{x}=\frac{2}{3}, \mathrm{y}=\frac{2}{3}, \mathrm{z}=-\frac{1}{3}\)

    When \(\mathrm{q}=-\frac{1}{3}\), then \(\mathrm{x}=-\frac{2}{3}, \mathrm{y}=-\frac{2}{3}, \mathrm{z}=\frac{1}{3}\)

    Here required unit vector is \(\frac{2 \hat{i}+2 \hat{j}-1 \hat{k}}{3}\)

    or \(-\frac{2}{3} \hat{\mathrm{i}}-\frac{2}{3} \hat{\mathrm{j}}+\frac{1}{3} \hat{\mathrm{k}}\)

  • Question 10
    1 / -0

    Solve the linear inequality:

    \(\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}\)

    Solution

    Given,

    \(\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}\)

    \(=\frac{x}{4}<\frac{5(5 x-2)-3(7 x-3)}{15}\)

    On simplifying we get

    \(=\frac{x}{4}<\frac{25 x-10-21 x+9}{15} \)

    \(=\frac{x}{4}<\frac{4 x-1}{15} \)

    \(=15 x<4(4 x-1) \)

    \(=15 x<16 x-4 \)

    \(=4

    All the real numbers of \(x\) which are greater than \(4\) are the solutions of the given inequality

    Hence, \((4, \infty)\) will be the solution for the given inequality.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now