\(\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2\)
Since, \(\overrightarrow{\beta_2}\) is perpendicular to \(\vec{\alpha}\).
\(\therefore \overrightarrow{\beta_2} \cdot \vec{\alpha}=0\)
Since, \(\overrightarrow{\beta_1}\) is parallel to \(\overrightarrow{\mathrm{a}}\).
\( \text { then } \overrightarrow{\beta_1}=\lambda \vec{\alpha} \text { (say) } \\\)
\( \vec{a} \cdot \vec{\beta}=\vec{a} \cdot \overrightarrow{\beta_1}-\alpha \cdot \overrightarrow{\beta_2} \\\)
\( \Rightarrow 5=\lambda \alpha^2 \Rightarrow 5=\lambda \times 10(\because|\vec{a}|=\sqrt{10}) \\\)
\( \Rightarrow \lambda=\frac{1}{2} \therefore \overrightarrow{B_1}=\frac{\alpha}{2} \\\)
\( \therefore \vec{\beta}_1=\frac{\vec{\alpha}}{2}\)
Cross product with \(\vec{B}_1\) in equation (1)
\( \Rightarrow \vec{\beta} \times \vec{B}_1=-\vec{B}_2 \times \vec{B}_1 \\\)
\( \Rightarrow \vec{\beta} \times \vec{B}_1=\vec{B}_1 \times \vec{B}_2 \Rightarrow \vec{\beta}_1 \times \vec{\beta}_2=\frac{\vec{\beta} \times \vec{\alpha}}{2} \\\)
\(\Rightarrow \vec{B}_1 \times \vec{B}_2=\frac{1}{2}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 3 & 1 & 0\end{array}\right|\)
\( =\frac{1}{2}[-3 \hat{i}-\hat{j}(-9)+\hat{k}(5)]=\frac{1}{2}[-3 \hat{i}+9 \hat{j}+5 \hat{k}]\)