Self Studies

Mathematics Test - 19

Result Self Studies

Mathematics Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Consider the two sets :

    \(A=\left\{m \in R\right.\) : both the roots of \(x^2-(m+1) x+m+4=0\) are real \(\}\) and \(B=(-3,5)\) Which of the following is not true?

    Solution

    \( A=\left\{m \in R: x^2-(m+1) x+m+4=0\right. \text { has real roots } \\\)

    \( D \geq 0 \\\)

    \( \Rightarrow(m+1)^2-4(m+4) \geq 0 \\\)

    \( \Rightarrow m^2-2 m-15 \geq 0\)

    A={(,3][5,)}
    B=[3,5)AB=(,3)[5,)

  • Question 2
    1 / -0

    The condition of being one root of the equations \(a x^{2}+b x+c=0\) and \(a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0\) common is:

    Solution

    Given equation \(a x^{2}+b x+c=0\) and \(a^{\prime} x^{2}+b^{\prime} x+c=0\)\(\alpha\) is the common root thus,

    \(a a^{2}+b a+c=0 \quad\quad\ldots \ldots(1)\)

    and \(a^{\prime} a^{2}+b^{\prime} \alpha+c=0 \quad\quad\ldots .(2)\)

    Solving both equation (1) and (2) by cross multiple method:

    \(\frac{\alpha^{2}}{\left(b c^{\prime}-b^{\prime} c\right)}=\frac{\alpha}{\left(c a^{\prime}-a c^{\prime}\right)}=\frac{1}{\left(a b^{\prime}-a^{\prime} b\right)}\)
    \(\quad(I) \quad\quad\quad(I I) \quad\quad\quad(I I I)\)

    From (I) and (II) we get, \(\alpha=\frac{b c^{\prime}-b^{\prime} c}{c a^{\prime}-a^{\prime} c^{\prime}} \quad\quad\ldots .(A)\)

    From (II) and (III) we get, \(\alpha=\frac{c a^{\prime}-a c^{\prime}}{a b^{\prime}-a^{\prime} b} \quad\quad\ldots(B)\)

    From equation (A) and (B) \(\frac{b c^{\prime}-b^{\prime} c}{c a^{\prime}-a c^{\prime}}=\frac{c a^{\prime}-a c^{\prime}}{a b^{\prime}-a^{\prime} b}\)

    \(\left({ca}^{\prime}-{ac}^{\prime}\right)^{2}=\left({bc}^{\prime}-{b}^{\prime} {c}\right)\left({ab}^{\prime}-{a}^{\prime} {b}\right)\)

  • Question 3
    1 / -0
    If \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|\), then angle between \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\) is-
    Solution

    Given:

    \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|\)

    To Find: Angle between \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\)

    \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|\)

    \(\Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta|\hat{\mathrm{n}}|=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta\)

    \(\Rightarrow \sin \theta=\cos \theta\) \(\quad(\because|\hat{n}|=1)\)

    \(\Rightarrow \tan \theta=1\)

    \(\therefore \theta=45^{\circ}\)

  • Question 4
    1 / -0

    For the given curve: \(y=2 x-x^{2}\), when \(x\) increases at the rate of 3 units/sec, then how the slope of curve changes?

    Solution

    Rate of change of '\(x\)' is given by \(\frac{d x}{d t}\)

    Given that, \(y=2 x-x^{2}\) and \(\frac{d x}{d t}=3\) units\(/\)sec

    Then, the slope of the curve, \(\frac{d y}{d x}=2-2 x=m\)

    \(\frac{ dm }{ dt }=0 - 2 \times \frac{ dx }{ dt }\)

    \(=-2(3)=-6\) units per second

    Thus, the slope of the curve is decreasing at the rate of 6 units per second when \(x\) is increasing at the rate of 3 units per second.

  • Question 5
    1 / -0

    Let \(\vec{\alpha}=3 \hat{i}+\hat{j}\) and \(\vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}\). If \(\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2\), where \(\vec{\beta}_1\) is parallel to \(\vec{\alpha}\) and \(\vec{\beta}_2\) is perpendicular to \(\vec{\alpha}\), then \(\vec{\beta}_1 \times \vec{\beta}_2\) is equal to:

    Solution

    \(\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2\)

     

    Since, \(\overrightarrow{\beta_2}\) is perpendicular to \(\vec{\alpha}\).

    \(\therefore \overrightarrow{\beta_2} \cdot \vec{\alpha}=0\)

    Since, \(\overrightarrow{\beta_1}\) is parallel to \(\overrightarrow{\mathrm{a}}\).

    \( \text { then } \overrightarrow{\beta_1}=\lambda \vec{\alpha} \text { (say) } \\\)

    \( \vec{a} \cdot \vec{\beta}=\vec{a} \cdot \overrightarrow{\beta_1}-\alpha \cdot \overrightarrow{\beta_2} \\\)

    \( \Rightarrow 5=\lambda \alpha^2 \Rightarrow 5=\lambda \times 10(\because|\vec{a}|=\sqrt{10}) \\\)

    \( \Rightarrow \lambda=\frac{1}{2} \therefore \overrightarrow{B_1}=\frac{\alpha}{2} \\\)

    \( \therefore \vec{\beta}_1=\frac{\vec{\alpha}}{2}\)

    Cross product with \(\vec{B}_1\) in equation (1)

    \( \Rightarrow \vec{\beta} \times \vec{B}_1=-\vec{B}_2 \times \vec{B}_1 \\\)

    \( \Rightarrow \vec{\beta} \times \vec{B}_1=\vec{B}_1 \times \vec{B}_2 \Rightarrow \vec{\beta}_1 \times \vec{\beta}_2=\frac{\vec{\beta} \times \vec{\alpha}}{2} \\\)

    \(\Rightarrow \vec{B}_1 \times \vec{B}_2=\frac{1}{2}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 3 & 1 & 0\end{array}\right|\)

    \( =\frac{1}{2}[-3 \hat{i}-\hat{j}(-9)+\hat{k}(5)]=\frac{1}{2}[-3 \hat{i}+9 \hat{j}+5 \hat{k}]\)

  • Question 6
    1 / -0

    Let \(\alpha\) and \(\beta\) be the roots of the quadratic equation \(x^2 \sin \theta-x(\sin \theta \cos \theta+1)+\cos \theta=0\left(0<\theta<45^{\circ}\right)\), and \(\alpha<\beta\). Then \(\sum_{n=0}^{\infty}\left(\alpha^n+\frac{(-1)^n}{\beta^n}\right)\) is equal to :

    Solution

    \( x^2 \sin \theta-x(\sin \theta \cdot \cos \theta+1)+\cos \theta=0 . \\\)

    \( x^2 \sin \theta-x \sin \theta \cdot \cos \theta-x+\cos \theta=0 \\\)

    \( x \sin \theta(x-\cos \theta)-1(x-\cos \theta)=0 \\\)

    \( (x-\cos \theta)(x \sin \theta-1)=0 \\\)

    \( \therefore x=\cos \theta, \operatorname{cosec} \theta, \theta \in\left(0,45^{\circ}\right) \\\)

    \( \therefore \alpha=\cos \theta, \beta=\operatorname{cosec} \theta \\\)

    \( \sum_{n=0}^{\infty} \alpha^n=1+\cos \theta+\cos ^2 \theta+\ldots \infty=\frac{1}{1-\cos \theta} \\\)

    \( \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^n}=1-\frac{1}{\operatorname{cosec}^2}+\frac{1}{\operatorname{cosec}^2 \theta}-\frac{1}{\operatorname{cosec}^3 \theta}+\ldots \infty \\\)

    \( =1-\sin \theta+\sin ^2 \theta-\sin ^3 \theta+\ldots \infty \\\)

    \( =\frac{1}{1+\sin \theta} \\\)

    \( \therefore \sum_{n=0}^{\infty}\left(\alpha^n+\frac{(-1)^n}{\beta^n}\right)=\sum_{n=0}^{\infty} \alpha^n+\sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^n} \\\)

    \( =\frac{1}{1-\cos \theta}+\frac{1}{1+\sin \theta}\)

  • Question 7
    1 / -0

    Let \(P Q\) be a focal chord of the parabola \(y^2=4 x\) such that it subtends an angle of \(\frac{\pi}{2}\) at the point \((3,0)\). Let the line segment PQ be also a focal chord of the ellipse \(E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2>b^2\). If \(e\) is the eccentricity of the ellipse \(E\), then the value of \(\frac{1}{e^2}\) is equal to:

    Solution

    \(\text { As } \angle \mathrm{PRQ}=\frac{\pi}{2} \\\)

    \( \left(\frac{\frac{2}{\mathrm{t}}}{3-\frac{1}{\mathrm{t}^2}}\right) \cdot\left(\frac{-2 \mathrm{t}}{3-\mathrm{t}^2}\right)=-1 \\\)

    \( \Rightarrow \mathrm{t}= \pm 1 \\\)

    \(\therefore \mathrm{P} \equiv(1,2) \& Q(1,-2) \\\)

    \(\therefore \text { for ellipse } \frac{1}{\mathrm{a}^2}+\frac{4}{\mathrm{~b}^2}=1 \text { and } \mathrm{ae}=1 \\\)

    \( \Rightarrow \frac{1}{\mathrm{a}^2}+\frac{4}{\mathrm{a}^2\left(1-\mathrm{e}^2\right)}=1 \\\)

    \(\Rightarrow 1+\frac{4}{\left(1-\mathrm{e}^2\right)}=\frac{1}{\mathrm{e}^2} \\\)

    \( \Rightarrow\left(5-\mathrm{e}^2\right) \mathrm{e}^2=1-\mathrm{e}^2 \\\)

    \( \Rightarrow \mathrm{e}^4-6 \mathrm{e}^2+1=0 \\\)

    \( \Rightarrow \mathrm{e}^2=\frac{1}{3-2 \sqrt{2}} \Rightarrow \frac{1}{\mathrm{e}^2}=3+2 \sqrt{2}\)

  • Question 8
    1 / -0

    The degree of the differential equation:

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    Solution

    Given,

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    For the given differential equation the highest order derivative is \(2\).

    The given differential equation is not a polynomial equation because it involved a logarithmic term in its derivatives so, its degree is not defined.

  • Question 9
    1 / -0

    Find the 8th term in the following sequence whose nth term is\(a_{n}=\frac{n^{2}}{2^{n}}\).

    Solution

    Given,

    nth term of the sequence is \(a_{n}=\frac{n^{2}}{2^{n}}\)

    To find the 8th term for the same, substitute n = 8

    We obtain

    \(a_{8}=\frac{8^{2}}{2^{8}}\)

    \(=\frac{64}{256}\)

  • Question 10
    1 / -0

    What is \(\int_{0}^{a} \frac{f(a-x)}{f(x)+f(a-x)} d x\) equal to?

    Solution

    As we know that \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\)

    \(I=\int_{0}^{a} \frac{f(a-x)}{f(x)+f(a-x)} d x\).......(1)

    So, we have lower limit \(a=0\), upper limit \(b=a\)

    \(\Rightarrow I=\int_{0}^{a} \frac{f[(0+a)-(a-x)]}{f[(a+0)-x]+f[(a+0)-(a-x)]} d x \)

    \(\Rightarrow I=\int_{0}^{a} \frac{f(x)}{f(a-x)+f(x)} d x \ldots \ldots . .(2)\)

    Now adding equation (1) and equation (2)

    \(\Rightarrow 2 I=\int_{0}^{a} \frac{f(a-x)}{f(x)+f(a-x)} d x+\int_{0}^{a} \frac{f(x)}{f(a-x)+f(x)} d x\)

    \(\Rightarrow 2 I=\int_{0}^{a} 1 d x\)

    \(\Rightarrow 2 I=a\)

    \(\therefore I=\frac{a}{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now