Self Studies

Mathematics Test - 2

Result Self Studies

Mathematics Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    How many three- digits numbers are there which are divisible by 9.

    Solution

    Three- digit numbers are divisible by 9 are: 

    108, 117, 126 . . . . 999

    Series of AP:

    108,117, 126 . . . . 999

    Tn =999

    a = 108

    d = 117 - 108 = 9

    As we know that, 

    Tn = a + (n - 1) d

    ⇒ 999 = 108 + (n - 1) 9

    ⇒ 891 = (n - 1) 9

    ⇒ 99 = n - 1

    ⇒ n = 100

  • Question 2
    1 / -0

    The domain of the function \(f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}\) is:

    Solution

    Given,

    \(f(x)=\sqrt{1-\sqrt{1-\sqrt{1-x^{2}}}}\)

    Here, \(1-x^{2} \geq 0\)

    \(\Rightarrow x^{2}-1 \leq 0\)

    \(\Rightarrow(x-1)(x+1) \leq 0\)

    when, \(x-1=0 \Rightarrow x=1\)

    when, \(x+1=0 \Rightarrow x=-1\)

    thus, domain of \(x=[-1,1]\)

  • Question 3
    1 / -0
    What is the value of \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\)?
    Solution

    Given that:

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\)

    Let,

    \(L=\underset{{{x \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{x \sin x}\) 

    \(L=\underset{{{x \rightarrow 0}}}{\lim}\frac{\left(e^{4 x^{2}}-1\right)}{x \sin x} \times \frac{4 x}{4 x}\)

    \(L=\underset{{{{x} \rightarrow 0}}}{\lim}\frac{\left({e}^{4 x^{2}}-1\right)}{4 {x}^{2}} \times\left(\frac{{x}}{\sin {x}}\right) \times 4\)

    We know that:

    \(\underset{{{x \rightarrow 0}}}{\lim}\frac{e^{x}-1}{x}=1\)

    \(\underset{{{x \rightarrow 0}}}{\lim} \frac{\sin x}{x}=1\)

    \(\therefore \underset{{{{x} \rightarrow 0}}}{\lim} \frac{\left(e^{4 x^{2}}-1\right)}{4 x^{2}}=1\)

    and, \( \underset{{{{x} \rightarrow 0}}}{\lim} \left(\frac{{x}}{\sin {x}}\right)=1\)

    and, 

    Now, 

    \(L=1 \times 1 \times 4=4\)

  • Question 4
    1 / -0

    Statement - 1: If 15(1+5p),13(1+2p),13(1-p)and15(1-3p) are the probabilities of four mutually exclusive events, then p can take infinite number of values.

    Statement - 2: If A, B, C and D are four mutually exclusive events, then P(A), P(B), P(C), P(D) 0 and P(A) + P(B) + P(C) + P(D) 1.

    Solution

    Statement- 2 is true. 

    Now, 15(1+5p),13(1+2p)

    13(1-p),15(1-3p)0

      p-1/5,p-1/2,p1,p1/3

      -1/5p1/3 ..(1)

    and 15(1+5p)+13(1+2p)+13(1-p)+15(1-3p)1

    15(2+2p)+13(2+p)16+6p+10+5p15

      11p-1  p-111 ..(2)

    From (1) and (2) we get -1/5p-111

     there are infinite values of p.

  • Question 5
    1 / -0

    If \(a=\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{2 n}{n^2+k^2}\) and \(f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}, x \in(0,1)\), then

    Solution

    \(\begin{aligned} & a=\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{2 n}{n^2+k^2} \\ & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n \frac{2}{1+\left(\frac{k}{n}\right)^2} \\ & a=\int_0^1 \frac{2}{1+x^2} d x=2 \tan ^{-1} x \int_0^1=\frac{\pi}{2} \\ & f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}, x \in(0,1) \\ & f(x)=\frac{1-\cos x}{\sin x}=\operatorname{cosec} x-\cot x \\ & f^{\prime}(x)=\operatorname{cosec}^2 x-\operatorname{cosec} x \cot x \\ & \left.\begin{array}{l}f\left(\frac{a}{2}\right)=f\left(\frac{\pi}{4}\right)=\sqrt{2}-1 \\ f^{\prime}\left(\frac{a}{2}\right)=f^{\prime}\left(\frac{\pi}{4}\right)=2-\sqrt{2}\end{array}\right\} f^{\prime}\left(\frac{a}{2}\right)=\sqrt{2} \cdot f\left(\frac{a}{2}\right) \\ & \end{aligned}\)

  • Question 6
    1 / -0

    \(\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5)\) is a multiple of 3 is true for:

    Solution

    Given:

    \(\mathrm{P}(\mathrm{n}): \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5)\) is a multiple of 3.

    For \(\mathrm{n}=1\)

    \( \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5)=1.2 \cdot 6=12=3.4\)

    \(\mathrm{P}(\mathrm{n})\) is true for \(\mathrm{n}=1\)

    Suppose \(\mathrm{p}(\mathrm{k})\) is true for \(\mathrm{n}=\mathrm{k}\)

    \(k(k+1)(k+5)=3 m\) (let) or \(k^{3}+6 k^{2}+5 k=3 m\).......(i)

    Replacing \(\mathrm{k}\) by \(\mathrm{k}+1\), we get

    \((k+1)(k+2)(k+6)=k\left(k^{2}+8 k+12\right)+\left(k^{2}+8 k+12\right) \)

    \(k^{3}+9 k^{2}+20 k+12=\left(k^{3}+6 k^{2}+5 k\right)+\left(3 k^{2}+15 k+12\right)\)

    \(=3 \mathrm{~m}+3 \mathrm{k}^{2}+15 \mathrm{k}+12 \quad\) [.......from (i) \(]\)

    \(=3\left(\mathrm{~m}+\mathrm{k}^{2}+5 \mathrm{k}+4\right)\)

    \((k+1)(k+2)(k+6)\) is a multiple of 3 i.e., \(P(k+1)\) is multiple of 3 , if \(P(k)\) is a multiple of 3 i.e., \(\mathrm{P}(\mathrm{k}+1)\) is true whenever \(\mathrm{P}(\mathrm{k})\) is true.

    So, \(\mathrm{P}(\mathrm{n})\) is true for all \(\mathrm{n} \in \mathrm{N}\).

  • Question 7
    1 / -0

    XY-plane divides the line joining the points \(A(2,3,-5)\) and \(B(-1,-2,-3)\) in the ratio:

    Solution

    Let \(X Y\) plane divides the line joining the points \(A(2,3,-5)\) and \(B(-1,-2,-3)\) in the ratio \(k: 1\).

    When the line segment is divided internally in the ratio \(m: n\), we use the formula: 

    \(\Leftrightarrow({x}, {y})=\left(\frac{{mx}_{2}+{nx}_{1}}{{~m}+{n}}, \frac{{my}_{2}+{ny}_{1}}{{~m}+{n}}\right)\)

    Using the section formula, the coordinate of the point of intersection is given by:

    \(\left(\frac{-k+2}{k+1}, \frac{-2 k+3}{k+1}, \frac{-3 k-5}{k+1}\right)\)

    As we know, on the XY plane Z-coordinate is zero.

    Therefore, \(\frac{-3 {k}-5}{{k}+1}=0\)

    \(\Rightarrow-3 k-5=0\)

    \(\Rightarrow-3 k=5\)

    \(\Rightarrow \frac{k}{1}=\frac{-5}{3}\)

    Therefore, the ratio is \(5: 3\) externally.

  • Question 8
    1 / -0

    If \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\), then \(\frac{d y}{d x}=?\)

    Solution

    Given that: 

    \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

    Differentiating with respect to \(x\), we get: 

    \(\Rightarrow \frac{2 {x}}{{a}^{2}}+\frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=0\)

    \(\Rightarrow \frac{2 {y}}{{b}^{2}} \frac{{dy}}{{dx}}=-\frac{2 {x}}{a^{2}}\)

    \(\therefore \frac{{dy}}{{dx}}=-\frac{{b}^{2} {x}}{{a}^{2} {y}}\)

  • Question 9
    1 / -0

    Find the equation of tangent to the curve \(y=\sqrt{5 x-3}-2\), which is parallel to the line \(4 x-2 y+3=0\)?

    Solution

    Given: Equation of curve is \(y=\sqrt{5 x-3}-2\) and the tangent to the curve \(y=\sqrt{5 x-3}-2\) is parallel to the line \(4 x-2 y+3=0\)

    The given line \(4 x -2 y +3=0\) can be re-written as:

    \(y =2 x +\left(\frac{3}{2}\right)=0\)

    Now by comparing the above equation of line with \(y = m x + c\) we get,

    \(m =2\) and \(c =\frac{3}{2}\)

    \(\because\) The line \(4 x-2 y+3=0\) is parallel to the tangent to the curve \(y=\sqrt{5 x-3}-2\)

    As we know that if two lines are parallel then their slope is same.

    So, the slope of the tangent to the curve \(y=\sqrt{5 x-3}-2\) is \(m =2\)

    Let, the point of contact be \(\left( x _{1}, y _{1}\right)\)

    As we know that slope of the tangent at any point say \(\left(x_{1}, y_{1}\right)\) to a curve is given by:

    \(m=\left[\frac{d y}{d x}\right]_{\left(x_{1}, y_{1}\right)}\)

    \(\Rightarrow \frac{d y}{d x}=\frac{1}{2} \cdot \frac{1}{\sqrt{5 x-3}} \cdot 5-0=\frac{5}{2 \sqrt{5 x-3}}\)

    \(\Rightarrow\left[\frac{d y}{d x}\right]_{\left(x_{1}, y_{1}\right)}=\frac{5}{2 \sqrt{5 x_{1}-3}}\)

    \(\because\) Slope of tangent to the curve \(y=\sqrt{5 x-3}-2\) is \(m =2\)

    \(\Rightarrow 2=\frac{5}{2 \sqrt{5 x_{1}-3}}\)

    By squaring both the sides of the above equation we get:

    \(4=\frac{25}{4 \cdot\left(5 x_{1}-3\right)}\)

    \(\Rightarrow x_{1}=\frac{73}{80}\)

    \(\because\left( x _{1}, y _{1}\right)\) is point of conctact i.e., \(\left( x _{1}, y _{1}\right)\) will satisfy the equation of curve:

    \(y=\sqrt{5 x-3}-2\)

    \(\Rightarrow y_{1}=\sqrt{5 x_{1}-3}-2\)

    By substituting \(x_{1}=\frac{73}{80}\) in the above equation we get:

    \(y _{1}=-\frac{3}{4}\)

    So, the point of contact is: \(\left(\frac{73}{80},-\frac{3}{4}\right)\)

    As we know that equation of tangent at any point say \(\left(x_{1}, y_{1}\right)\) is given by:

    \(y-y_{1}=\left[\frac{d y}{d x}\right]_{\left(x_{1}, y_{1}\right)} \cdot\left(x-x_{1}\right)\)

    \(\Rightarrow y+\frac{3}{4}=2 \cdot\left(x-\frac{73}{80}\right)\)

    \(\Rightarrow 80 x-40 y-103=0\)

    So, the equation of tangent to the given curve at the point \(\left(\frac{73}{80},-\frac{3}{4}\right)\) is \(80 x -40 y-103=0\)

  • Question 10
    1 / -0

    The solution of the differential equation \(y d x+\left(x+x^{2} y\right) d y=0\) is:

    Solution

    \(y d x+\left(x+x^{2} y\right) d y=0\)

    \(y d x+x d y+x^{2} y d y=0\)

    \(y d x+x d y=-x^{2} y d y\) \(\left(\because \frac{d}{d x}(x y)=y d x+x d y\right)\)

    \(\frac{d}{d x}(x y)=-x^{2} y d y\)

    \(\frac{\frac{d}{d x}(x y)}{x^{2} y}=-d y\)

    \(\frac{\frac{d}{d x}(x y)}{(x y)^{2}}=\frac{-d y}{y}\).....(i)

    integrating eq. (1) both side, we get \(\int \frac{\frac{d}{d x}(x y)}{(x y)^{2}}=-\int \frac{d y}{y}\)

    \(\frac{1}{(x y)}=-\log y+C\) (where C is integral constant)

    \(-\frac{1}{x y}+\log y=C\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now