Unit vector \(\hat{\mathrm{u}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}\)
\( \vec{p}_1=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}_2 \vec{p}_2=\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k} \\\)
\( \vec{p}_3=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\)
Now angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_1=\frac{\pi}{2}\)
\(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_1=0 \Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=0 \\\)
\( \Rightarrow \mathrm{x}+\mathrm{z}=0\)
Angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_2=\frac{\pi}{3}\)
\(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_2=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_2\right| \cos \frac{\pi}{3} \\\)
\(\Rightarrow \frac{\mathrm{y}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=\frac{1}{2} \Rightarrow \mathrm{y}+\mathrm{z}=\frac{1}{\sqrt{2}}\)
Angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_3=\frac{2 \pi}{3}\)
\(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_3=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_3\right| \cos \frac{2 \pi}{3} \\\)
\(\Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{4}{\sqrt{2}}=\frac{-1}{2} \Rightarrow \mathrm{x}+\mathrm{y}=\frac{-1}{\sqrt{2}}\)
from equation (i), (ii) and (iii) we get
\(x=\frac{-1}{\sqrt{2}} \quad y=0 \quad z=\frac{1}{\sqrt{2}}\)
Thus \(\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}-\frac{1}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\)
\(\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-2}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\)
\(\therefore|\hat{u}-\vec{v}|^2=\left(\sqrt{\frac{4}{2}+\frac{1}{2}}\right)^2=\frac{5}{2}\)