Self Studies

Mathematics Test - 20

Result Self Studies

Mathematics Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Consider the following Linear Programming Problem (LPP):

    Maximize \(Z=3 x_{1}+2 x_{2}\)

    Subject to:

    \(x_{1} \leq 4 \)

    \(x_{2} \leq 6 \)

    \(3 x_{1}+2 x_{2} \leq 18 \)

    \(x_{1} \geq 0, x_{2} \geq 0\)

    Solution

    \(Z_{\max }=3 x_{1}+2 x_{2}\)

    Subjected to:

    \(x_{1} \leq 4 \ldots . .(i) \)

    \(x_{2} \leq 6 \ldots(i i)\)

    \(3 x_{1}+2 x_{2} \leq 18 \ldots(i i i) \)

    \(\text { and } x_{1}, x_{2} \geq 0\)

    Now the intersections of the lines are denoted by \(E, F\)

    For \(E, 3 x_{1}+2 x_{2}=18\)

    \(x_{2}=6\)

    So,

    \(3 x_{1}+(2 \times 6)=18\)

    \(\boldsymbol{x}_{1}=2\)

    \(E(2,6)\)

    \(x_{1}=4\)

    \((3 \times 4)+2 x_{2}=18\)

    \(x_{2}=3\)

    \(F(4,3)\)

    So the feasible points are \((0,0),(4,0),(4,3),(2,6),(0,6)\) \(Z(0,0)=0\)

    \(Z(4,0)=12\)

    \(Z(4,3)=(3 \times 4)+(2 \times 3)=18\)

    \(Z(2,6)=(3 \times 2)+(2 \times 6)=18\)

    \(Z(0,6)=12\)

    So the objective function has multiple solution.

  • Question 2
    1 / -0

    There are 4 flags of different colours and each can be used for signals. Determine how many signals can be sent using one or more flags at a time.

    Solution

    We know that:

    To arrange \(n\) things in an order of a number of objects taken \(r\) things is:

    \( { }^{n} P_{r}=\frac{n!}{(n-r)!}\)

    or, \( { }^{n} P_{r}=\frac{n \times (n-1)\times(n-2)\times \cdots \times (n-r)\times \cdots \times3\times2\times1}{(n-r)!}\)

    Given:

    Number of signals that can be sent using 1 flag is:

    \({ }^{4} \mathrm{P}_{1}=\frac{4!}{(4-1)!}=4\)

    Number of signals that can be sent using 2 flags is:

    \({ }^{4} \mathrm{P}_{2}=\frac{4!}{(4-2)!}=12\)

    Number of signals that can be sent using 3 flags is:

    \({ }^{4} P_{3}=\frac{4!}{(4-3)!}=24\)

    Number of signals that can be sent using 4 flags is:

    \({ }^{4} P_{4}=\frac{4!}{(4-4)!}=24\)

    \(\therefore\) Total number of signals that can be sent at a time \(=4+12+24+24=64\)

  • Question 3
    1 / -0

    If \(x=a\) and \(x=\beta\) satisfy the equations \(\cos ^{2} x+a \cos x+b=0, \sin ^{2} x+p \sin x+q=0\) both, then the relation among \({a}, {b}, {p}\) and \({q}\) will be:

    Solution

    We know that:

    Sum of roots \(=\frac{-b}{a}\)

    Product of roots \(= \frac{c}{a}\)

    Given: \(\cos ^{2} x+a \cos x+b=0 \quad \ldots \ldots(1)\)

    \(\sin ^{2} x+p \sin x+q=0\quad \ldots \ldots(2)\)

    \(x=\alpha\) and \(x=\beta\) satisfy the equations.

    Since both the equations are in the quadratic form, (in 'sin' and 'cos'), we have its roots, let us say the roots of the first equation be (sinα, sin β), and that of the second equation be (cosα, cos β).

    So, for equation (1).

    Sum of roots \(=\sin \alpha+\sin \beta=-a\quad\quad.....(3)\)

    Product of roots \(=\sin \alpha \cdot \sin \beta={b}\quad\quad.....(4)\)

    For equation (2),

    Sum of roots \(=\cos \alpha+\cos \beta=-p\quad\quad.....(5)\)

    Product of roots \(=\cos \alpha . \cos \beta={q}\quad\quad.....(6)\)

    Squaring and adding (3) and (5), we get,

    \((\sin \alpha+\sin \beta)^{2}+(\cos \alpha+\cos \beta)^{2}=(-a)^{2}+(-p)^{2}\)

    \(\sin ^{2} \alpha+\sin ^{2} \beta+2 \sin \alpha \cdot \sin \beta+\cos ^{2} \alpha+\cos ^{2} \beta+2 \cos \alpha \cdot \cos \beta=a^{2}+p^{2}\)

    \(1+1+2(\sin \alpha \cdot \sin \beta+\cos \alpha \cdot \cos \beta)=a^{2}+p^{2}\)

    \(2(b+q)=a^{2}+p^{2}-2\)

    Thus, we conclude that the relation is \(2(b+q)=a^{2}+p^{2}-2\)

  • Question 4
    1 / -0

    A box contains \(4\) tennis balls, 6 season balls and \(8\) dues balls. \(3\) balls are randomly drawn from the box. What is the probability that the balls are different?

    Solution

    Given,A box contains \(4\) tennis balls, \(6\) season balls and \(8\) dues balls

    We know that,Probability \(=\frac{\text { Favourable outcomes }}{\text { Total outcomes }}\)

    Let us assume that all balls are unique.

    There are a total of \(18\) balls.

    Number of all combinations of \(n\) things, taken \(r\) at a time, is given by \({ }^{n} C_{r}=\frac{n !}{(r) !(n-r) !}\)

    Total ways \(=3\) balls can be chosen in \({ }^{18} \mathrm{C}_{3}\) ways

    \(=\frac{18 !}{3 ! \times 15 !}\)

    \(=\frac{18 \times 17 \times 16}{3 \times 2 \times 1}\)\(=816\)

    There are \(4\) tennis balls, \(6\) season balls and \(8\) dues balls, \(1\) tennis ball, \(1\) season ball and \(1\) dues Ball drawn.

    Therefore, favorable ways \(=4 \times 6 \times 8\)\(=192\)

    Probability \(=\frac{192}{816}\)\(=\frac{4}{17}\)

  • Question 5
    1 / -0

    If lines \(\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}\) and \(\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}\) are mutually perpendicular, then \(k\) is equal to:

    Solution

    The lines \(\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}\) and \(\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}\) are mutually perpendicular.

    As we know, if \(a, b, c\) are the direction ration ratios of a line passing through the point \(\left(x_{1}, y_{1}, z_{1}\right)\), then the equation of line is given by,

    \(\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}\)

    Let, \(L_{1}\) be \(\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}\) and \(L_{2}\) be \(=\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}\) respectively.

    Now by comparing \(L_{1}\) and \(L_{2}\) with \(\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}\), we get

    \( a _{1}=-3, b _{1}=2 k , c _{1}=2, a _{2}=3 k , b _{2}=1\) and \(c _{2}=-5\)

    As we know that if two lines are perpendicular, then

    \(a _{1} \cdot a _{2}+ b _{1} \cdot b _{2}+ c _{1} \cdot c _{2}=0\)

    \(\therefore (-3) \cdot 3k+2k \cdot 1+2 \cdot (-5)=0\)

    \(\Rightarrow -9 k+2 k-10=0 \)

    \(\Rightarrow-7 k=10\Rightarrow k=-\frac{10 }{ 7}\)

  • Question 6
    1 / -0

    In a class of 50, 20 students like mathematics, 15 like science and 5 like both mathematics and science. Find the number of students who do not like any of the 2 subjects.

    Solution

    Let,

    Set A of students who like mathematics, so:

    n(A)=20

    Set \(B\) of students who like science, so:

    \(n(B)=15\)

    Given:

    \(n(A \cap B)=5\)

    Set of students who like at least one of the 2 given subjects is \(A \cup B\), then:

    \(n(A \cup B)=n(A)+n(B)-n(A \cap B)\)

    \(n(A \cup B)=20+15-5=30\)

    Students who do not like either of the subjects = Total students -\(n(A \cup B)\)

    \(=50-30\)

    \(=20\)

  • Question 7
    1 / -0

    For \(n \in N\), \(7^{2 n}+16 n-1\) is divisible by:

    Solution

    Given,

    \(S=7^{2 n}+16 n-1\)

    For \(n=1\),

    \(S=49+16-1=64\)

    For \(n=2\),

    \(S=2401+32-1\)

    \(=2432\)

    \(=64 \times 38\)

    As we can say that\(2432\)is divisible by \(64\).

  • Question 8
    1 / -0

    In a survey of 1,000 consumers, it is found that 720 consumers liked product \(A\) and 450 liked product \(B\). What is the least number that must have liked both the products?

    Solution

    Given:

    Total consumers \(=1000\)

    Consumers who like product \(A =720\)

    Consumers who like product \(B =450\)

    We know that:

    \(n(A \cup B)=n(A)+n(B)-n(A \cap B)\)

    Least number that like both the products are \(=n(A \cap B)\)

    \(\Rightarrow 1000=720+450- n ( A \cap B )\)

    \(\Rightarrow 1000=1170- n ( A \cap B )\)

    \(\Rightarrow n ( A \cap B )=170\)

    \(\therefore 170\) consumers like both the products \(A\) and \(B\).

  • Question 9
    1 / -0

    \(\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)} \text { is equal to : }\)

    Solution

    \(\lim _{x \rightarrow \frac{1}{\sqrt{2}}} \frac{\sin \left(\cos ^{-1} x\right)-x}{1-\tan \left(\cos ^{-1} x\right)} \\\)

    \( \text { Let } \cos ^{-1} \mathrm{x}=\mathrm{t} \\\)

    \( \Rightarrow \mathrm{x}=\cos \mathrm{t} \\\)

    \( \text { When } \mathrm{x} \rightarrow \frac{1}{\sqrt{2}} \text {, then } \mathrm{t} \rightarrow \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right) \rightarrow \frac{\pi}{4} \\\)

    \(\therefore \lim _{t \rightarrow \frac{\pi}{4}} \frac{\sin t-\cos t}{1-\tan (t)} \\\)

    \( =\lim _{t \rightarrow \frac{\pi}{4}} \frac{\sin t-\cos t}{1-\frac{\sin t}{\cos t}} \\\)

    \( =\lim _{t \rightarrow \frac{\pi}{4}} \frac{(\sin t-\cos t)(\cos t)}{(\cos t-\sin t)} \\\)

    \( =\lim _{t \rightarrow \frac{\pi}{4}}-\cos t \\\)

    \( =-\lim _{t \rightarrow \frac{\pi}{4}} \cos t \\\)

    \( =-\frac{1}{\sqrt{2}} \\\)

  • Question 10
    1 / -0

    Let a unit vector \(\hat{\mathrm{u}}=\mathrm{x} \cdot \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}\) make angles \(\frac{\pi}{2}, \frac{\pi}{3}\) and \(\frac{2 \pi}{3}\) with the vectors \(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}, \frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}\) and \(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j} \quad\) respectively. If \(\overrightarrow{\mathrm{v}}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\), then \(|\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}|^2\) is equal to:

    Solution

    Unit vector \(\hat{\mathrm{u}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}\)

    \( \vec{p}_1=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}_2 \vec{p}_2=\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k} \\\)

    \( \vec{p}_3=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\)

    Now angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_1=\frac{\pi}{2}\)

    \(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_1=0 \Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=0 \\\)

    \( \Rightarrow \mathrm{x}+\mathrm{z}=0\)

    Angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_2=\frac{\pi}{3}\)

    \(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_2=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_2\right| \cos \frac{\pi}{3} \\\)

    \(\Rightarrow \frac{\mathrm{y}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=\frac{1}{2} \Rightarrow \mathrm{y}+\mathrm{z}=\frac{1}{\sqrt{2}}\)

    Angle between \(\hat{\mathrm{u}}\) and \(\overrightarrow{\mathrm{p}}_3=\frac{2 \pi}{3}\)

    \(\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_3=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_3\right| \cos \frac{2 \pi}{3} \\\)

    \(\Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{4}{\sqrt{2}}=\frac{-1}{2} \Rightarrow \mathrm{x}+\mathrm{y}=\frac{-1}{\sqrt{2}}\)

    from equation (i), (ii) and (iii) we get

    \(x=\frac{-1}{\sqrt{2}} \quad y=0 \quad z=\frac{1}{\sqrt{2}}\)

    Thus \(\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}-\frac{1}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}\)

    \(\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-2}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\)

    \(\therefore|\hat{u}-\vec{v}|^2=\left(\sqrt{\frac{4}{2}+\frac{1}{2}}\right)^2=\frac{5}{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now