Self Studies

Mathematics Test - 21

Result Self Studies

Mathematics Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(f(x)=\log x^{3}+2 x^{2}-3 x+100\), then find \(f'(3)\).

    Solution

    We know that:

    If \(f(x)=x^{n}\), then \(f'(x)=n x^{n-1}\)

    \(f(x)=\log x\), then \(f'(x)=\frac{1}{x}\)

    \(f(x)=\) Constant, then \(f'(x)=0\)

    \(\log m^{n}=n \log m\)

    Given here:

    \(\mathrm{f}(\mathrm{x})=\log \mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}(\mathrm{x})=3 \log \mathrm{x}+2 \mathrm{x}^{2}-3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}+\frac{\mathrm{d}}{\mathrm{dx}} 2 \mathrm{x}^{2}-\frac{\mathrm{d}}{\mathrm{dx}} 3 \mathrm{x}\)

    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{3}{x}+4 \mathrm{x}-3\)

    Putting x = 3 in above, we get:

    \(\Rightarrow \mathrm{f}^{\prime}(3)=\frac{3}{3}+4(3)-3\)

    \(\Rightarrow \mathrm{f}^{\prime}(3)=10\)

  • Question 2
    1 / -0

    Find the area between the curve \(y=\sin x\) and lines \(x=-\frac{\pi}{3}\) to \(x=\frac{\pi}{3}\).

    Solution

    Curve 1: \(y=\sin x=f(x)\) (say)

    Curve 2: Lines \({x}=-\frac{\pi}{3}\) and \({x}=\frac{\pi}{3}\)

    It can be drawn as follows:

    According to the figure the sum of area curve \(\mathrm{OAB}\) and curve OCD.

    Here, \(\mathrm{OAB}\) and \(\mathrm{OCD}\) are equal and limit 0 to \(\frac{\pi}{3}\).

    So,  Area \(=2 \times\) area of \(\mathrm{OAB}\).

    The area between the curves \(y_{1}=f(x)\) and \(y_{2}=g(x)\) is given by: 

    Area enclosed \(=\left|\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mathrm{dx}\right|\)

    Where, \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) are the intersections of curves \(\mathrm{y}_{1}\) and \(\mathrm{y}_{2}\)

    Now, the required area (A) is,

    Area of \(O A B=\left|\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}\right|\)

    \(=\left|\int_{0}^{\frac{\pi}{3}} \sin x ~d x\right|\)

    \(=\left|[-\cos x]_{0}^{\frac{\pi}{3}}\right|\)

    \(=\left|-\cos \frac{\pi}{3}+\cos 0^{\circ}\right|\)

    \(=\left|1-\frac{1}{2}\right|\) \(=\frac{1}{2}\)

    \(\therefore\) Shaded Area \(=2 \times \frac{1}{2}=1\)

  • Question 3
    1 / -0

    If \(A\) and \(B\) are two non-empty sets having n elements in common, then what is the number of common elements in the sets \(A \times B\) and \(B \times A ?\)

    Solution

    We know that:

    Let \(A\) and \(B\) be any two sets.

    \(A \times B=\{(x, y)\) where \(x\) in \(A\) and \(y\) in \(B\}\)

    Let \({A}\) and \({B}\) are two non-empty sets.

    Consider, \(A=\{1,2,3\}\) and \(B=\{2,3\}\)

    Here, in \({A}\) and \({B}\), there are 2 common elements.

    Now,

    \({A} \times {B}=\{(1,2),(1,3),(2,2),(2,3),(3,2),(3,3)\}\)

    And, \({B} \times {A}=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}\)

    In \(A \times B\) and \(B \times A\), there are \(4(=2^{2})\) i.e., common elements \(=n^{2}\)

    Therefore, if \({A}\) and \({B}\) are two non-empty sets having \({n}\) elements in common, then \({n}^{2}\) common elements in the sets \(A \times B\) and \(B \times A\).

  • Question 4
    1 / -0

    A bag contains \(7\) red and \(4\) blue balls. Two balls are drawn at random with replacement. The probability of getting the balls of different colors is:

    Solution

    There are a total of \(7\) red \(+4\) blue \(=11\) balls.

    Probability of drawing \(1\) red ball \(=\frac{{ }^{7} C_{1}}{{ }^{11} C_{1}}=\frac{7}{11}\)

    Probability of drawing \(1\) blue ball \(=\frac{{ }^{4} C_{1}}{{ }^{11} C_{1}}=\frac{4}{11}\)

    Probability of drawing (\(1\) red) AND (\(1\) blue) ball \(=\frac{7}{11} \times \frac{4}{11}=\frac{28}{121}\)

    Similarly, Probability of drawing (\(1\) blue) AND (\(1\) red) ball \(=\frac{4}{11} \times \frac{7}{11}=\frac{28}{121}\)

    Probability of getting the balls of different colors \(=\frac{28}{121}+\frac{28}{121}\)

    \(=\frac{56}{121}\)

  • Question 5
    1 / -0

    Let \(\mathrm{S}_{\mathrm{n}}=1+\mathrm{q}+\mathrm{q}^2+\ldots .+\mathrm{q}^{\mathrm{n}}\) and \(\mathrm{T}_{\mathrm{n}}=1+\left(\frac{\mathrm{q}+1}{2}\right)+\left(\frac{\mathrm{q}+1}{2}\right)^2+\ldots+\left(\frac{\mathrm{q}+1}{2}\right)^{\mathrm{n}}\) where \(\mathrm{q}\) is a real number and \(\mathrm{q} \neq 1\). If \({ }^{101} \mathrm{C}_1+{ }^{101} \mathrm{C}_2 \cdot \mathrm{S}_1+\ldots .+{ }^{101} \mathrm{C}_{101} \cdot \mathrm{S}_{100}=\alpha \mathrm{T}{ }_{100}\), then \(\alpha\) is equal to:

    Solution

    \(S_n=\left(\frac{1-q^{n+1}}{1-q}\right), T_n=\frac{1-\left(\frac{q+1}{2}\right)^{n+1}}{1-\left(\frac{q+1}{2}\right)} \\\)

    \(\Rightarrow T_{100}=\frac{1-\left(\frac{q+1}{2}\right)^{101}}{1-\left(\frac{q+1}{2}\right)} \\\)

    \( S n=\frac{1}{1-q}-\frac{q^{n+1}}{1-q}, T_{100}=\frac{2^{101}-(q+1)^{101}}{2^{100}(1-q)}\)

    Now, \({ }^{101} \mathrm{C}_1+{ }^{101} \mathrm{C}_2 \mathrm{~S}_1+{ }^{101} \mathrm{C}_3 \mathrm{~S}_2+\ldots+{ }^{101} \mathrm{C}_{101} \mathrm{~S}_{100}\)

    \( =\left(\frac{1}{1-q}\right)\left({ }^{101} \mathrm{C}_2+\ldots+{ }^{101} \mathrm{C}_{101}\right) \\\)

    \( -\frac{1}{1-q}\left({ }^{101} \mathrm{C}_2 \mathrm{q}^2+{ }^{101} \mathrm{C}_3 \mathrm{q}^3+\ldots+{ }^{101} \mathrm{C}_{101} \mathrm{q}^{101}\right)+101 \\\)

    \(=\frac{1}{1-\mathrm{q}}\left(2^{101}-1-101\right)-\left(\frac{1}{1-\mathrm{q}}\right)\left((1+q)^{101}-1\right. \\\)

    \( \left.-{ }^{101} \mathrm{C}_1 \mathrm{q}\right)+101 \\\)

    \( =\frac{1}{1-\mathrm{q}}\left[2^{101}-102-(1+\mathrm{q})^{101}+1+101 \mathrm{q}\right]+101 \\\)

    \( =\frac{1}{1-\mathrm{q}}\left[2^{101}-101+101 \mathrm{q}-(1+\mathrm{q})^{101}\right]+101 \\\)

    \( =\left(\frac{1}{1-\mathrm{q}}\right)\left[2^{101}-(1+\mathrm{q})^{101}\right]=2^{100} \mathrm{~T}_{100}\)

    Hence, by comparison \(\alpha=2^{100}\)

  • Question 6
    1 / -0

    The graph of the inequations \(x \leq 0, y \leq 0\), and \(2 x+y+6 \geq 0\) is:

    Solution

    A triangular region in the 3rd quadrant

    Given inequalities x ≥ 0 , y ≥ 0 , 2x + y + 6 ≥ 0

    Now take x = 0, y = 0 and 2x + y + 6 = 0

    when x = 0, y = -6

    when y = 0, x = -3

    So, the points are A(0, 0), B(0, -6) and C(-3, 0)

    So, the graph of the inequations x ≤ 0 , y ≤ 0 , and 2x + y + 6 ≥ 0 is a triangular region in the 3rd quadrant.

  • Question 7
    1 / -0

    Find the value of \(\lim _{\mathrm{x} \rightarrow 3} \frac{\mathrm{x}^{4}-81}{\mathrm{x}^{3}-27} \)

    Solution

    Given:

    \(\lim _{\mathrm{x} \rightarrow 3} \frac{\mathrm{x}^{4}-81}{\mathrm{x}^{3}-27}\)

    On checking the limit by putting \(x=3\) in above equation, we get \((\frac{0}{0})\) form.

    We know that:

    L-Hospital Rule as:

    \(\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}\)

    \(\therefore\) By using the L-Hospital rule, we get,

    \(\lim _{x \rightarrow 3} \frac{x^{4}-81}{x^{3}-27}=\lim _{x \rightarrow 3} \frac{\frac{d}{dx}(x^{4}-81)}{\frac{d}{dx}(x^{3}-27)}\)

    \(=\lim _{x \rightarrow 3} \frac{4 x^{3}}{3 x^{2}}\quad\) \((\because \frac{d}{dx}(x^n)= nx^{n-1}\) and differentiation of constant term is \(0.)\)

    \(=\lim _{x \rightarrow 3} \frac{4 x}{3}\)

    Putting the value of \(x \rightarrow3\) in above equation, we get

    \(=\frac{4(3)}{3}\)

    \(=4\)

  • Question 8
    1 / -0

    Find distance between the parallel lines \(p(x+y)+q=0\) and \(p(x+y)-r=0\)?

    Solution

    Given,

    Two parallel line\(p(x+y)+q=0\) and \(p(x+y)-r=0\)

    The distance between the parallel lines \(ax+by+c_{1}=0\) and \(a x+b y+c_{2}=0\) is given by:

    \(d=\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|\)

    Here, we have to find the distance between the parallel lines \(p(x+y)+q=0\) and \(p(x\) \(+y)-r=0\)

    The given equations of line can be re-written as: \(p x+p y+q=0\) and \(p x+p y-r=0\)

    By comparing the equations of the given line with \(ax+by+\mathrm{c}_{1}=0\) and \(ax+by+\) \(c_{2}=0\) we get,

    \(a=p, b=p, c_{1}=q\) and \(c_{2}=-r\)

    As we know that, the distance between the parallel lines is given by:

    \(d=\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|\)

    \(d=\left|\frac{q+r}{\sqrt{p^{2}+p^{2}}}\right|\)

    \(=\frac{|q+r|}{\sqrt{2} p}\)

    Distance between the parallel lines \(p(x+y)+q=0\) and \(p(x+y)-r=0\) is\(\frac{|q+r|}{\sqrt{2} p}\).

  • Question 9
    1 / -0

    Let \(S\) be the set of all values of \(a_1\) for which the mean deviation about the mean of 100 consecutive positive integers \(a_1, a_2, a_3, \ldots, a_{100}\) is 25 . Then \(\mathrm{S}\) is:

    Solution

    let \(a_1\) be any natural number

    \( a_1, a_1+1, a_1+2, \ldots, a_1+99 \text { are values of } \\\)

    \( \bar{x}=\frac{a_1+\left(a_1+1\right)+\left(a_1+2\right)+\ldots+a_1+99}{100} \\\)

    \(=\frac{100 a_1+(1+2+\ldots .+99)}{100}=a_1+\frac{99 \times 100}{2 \times 100} \\\)

    \(=a_1+\frac{99}{2} \\\)

    \( \text { Mean deviation about mean }=\frac{\sum_{1=1}^{100}\left|x_i-\bar{x}\right|}{100} \\\)

    \(=\frac{2\left(\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots+\frac{1}{2}\right)}{100} \\\)

    \(=\frac{1+3+\ldots .99}{100} \\\)

    \(=\frac{50}{2}[1+99] \\\)

    \(=25\)

    So, it is true for every natural number ' \(a_1\) '

  • Question 10
    1 / -0

    For a distribution of student’s height, the quartiles are \(60.125, 61.345, 62.688\). The absolute measure of skewness is:

    Solution

    Given:

    \(\mu_{1}=60.125\)

    \(\mu_{2}=61.345\)

    \(\mu_{3}=62.688\)

    Skewness coefficient is denoted by \(\beta_{1}\)

    \(\beta_{1}=\frac{(\mu_{3})^{2}}{(\mu_{2})^{3}}\)

    \(=\frac{(62.688)^{2}}{(61.345)^{3}}\)

    \(\Rightarrow \beta_{1}=0.0170\)

    Absolute skewness measurement \(=\gamma_{1}\)

    \(\Rightarrow \gamma_{1}=\sqrt{( \beta_{1})}\)

    \(=\sqrt{ 0.0170}\)

    \(=0.130\)

    \(\therefore\) Absolute skewness measurement is\(0.130\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now