Self Studies

Mathematics Test - 22

Result Self Studies

Mathematics Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find \(2 X-Y\) matrix such as \(X+Y=\left[\begin{array}{ll}7 & 5 \\ 3 & 4\end{array}\right]\) and \(X-Y=\left[\begin{array}{cc}1 & -3 \\ 3 & 0\end{array}\right]\).

    Solution
    Given,
    \(X+Y=\left[\begin{array}{ll}7 & 5 \\ 3 & 4\end{array}\right] \)...(i)
    \(X-Y=\left[\begin{array}{cc}
    1 & -3 \\
    3 & 0
    \end{array}\right]\)...(ii)
    Adding the equations (i) and (ii), we get
    \(\begin{aligned}
    &2 X=\left[\begin{array}{ll}
    8 & 2 \\
    6 & 4
    \end{array}\right] \\
    &\Rightarrow X=\left[\begin{array}{ll}
    4 & 1 \\
    3 & 2
    \end{array}\right]
    \end{aligned}\)
    Substracting (ii) from (i), we get
    \(\begin{aligned}
    &\text { 2Y }=\left[\begin{array}{ll}
    6 & 8 \\
    0 & 4
    \end{array}\right] \\
    &\Rightarrow Y=\left[\begin{array}{ll}
    3 & 4 \\
    0 & 2
    \end{array}\right]\end{aligned} \)
    Let \(A =2 X - Y\)
    \(A=2 \times\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]-\left[\begin{array}{ll}3 & 4 \\ 0 & 2\end{array}\right]\)
    \(\Rightarrow A=\left[\begin{array}{ll}8 & 2 \\ 6 & 4\end{array}\right]-\left[\begin{array}{ll}3 & 4 \\ 0 & 2\end{array}\right]\)
    \(\Rightarrow A=\left[\begin{array}{cc}5 & -2 \\ 6 & 2\end{array}\right]\)
    \(\therefore 2X-Y =\left[\begin{array}{cc}5 & -2 \\ 6 & 2\end{array}\right]\)
  • Question 2
    1 / -0

    The radius of a circle is changing at the rate of \(\frac{ dr }{ dt }=0.01\) m/sec. The rate of change of its area \(\frac{ dA }{ dt }\), when the radius of the circle is \(4\) m, is:

    Solution

    We know that the area of a circle of radius units is given by \(A =\pi r ^{2}\) sq.units.

    \(\therefore \frac{ dA }{ dt }=\frac{ d }{ dt }\left(\pi r ^{2}\right)=2 \pi r \left(\frac{ dr }{ dt }\right)\)

    Now, \(\left[\frac{ dA }{ dt }\right]_{ r =4}=8 \pi(0.01)\) m\(^{2}/\) sec \(=0.08 \pi\) m\(^{2}/\)sec

  • Question 3
    1 / -0

    \(\text { Let } \alpha=\frac{(4 !) !}{(4 !)^{3 !}} \text { and } \beta=\frac{(5 !) !}{(5 !)^{4 !}} \text {. Then : }\)

    Solution

    \( \alpha=\frac{(4 !) !}{(4 !)^{3 !}} \beta=\frac{(5 !) !}{(5 !)^{4 !}} \\\)

    \( \alpha=\frac{(24) !}{(4 !)^6}, \beta=\frac{(120) !}{(5 !)^{24}}\)

    Let 24 distinct objects are divided into 6 groups of 4 objects in each group.

    No. of ways of formation of group \(=\frac{24 !}{(4 !)^6 \cdot 6 !} \in \mathrm{N}\)

    Similarly,

    Let 120 distinct objects are divided into 24 groups of 5 objects in each group.

    No. of ways of formation of groups

    \(=\frac{(120) !}{(5 !)^{24} \cdot 24 !} \in \mathrm{N}\)

  • Question 4
    1 / -0

    Hungarian algorithm used to solve ____________.

    Solution

    Hungarian algorithm used to solveassignment problem.The assignment problem is a special case of transportation problem where the matrix must be a square matrix and every row and every column only one allocation is possible. The matrix must be square matrix.The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.

  • Question 5
    1 / -0

    If \(\sin ^{-1} x+\cos ^{-1} y=\frac{2 \pi}{5}\), then \(\cos ^{-1} x+\sin ^{-1} y\) is:

    Solution

    Given,

    \(\sin ^{-1} {x}+\cos ^{-1} {y}=\frac{2 \pi}{5}\)

    We know that, \(\sin ^{-1} {x}+\cos ^{-1} {x}=\frac{\pi}{2}\)

    \(\sin ^{-1} x=\frac{\pi}{2}-\cos ^{-1} x\)....(i)

    Similarly,

    \(\sin ^{-1} {y}+\cos ^{-1} {y}=\frac{\pi}{2}\)

    \(\cos ^{-1} {y}=\frac{\pi}{2}-\sin ^{-1} {y}\)...(i)

    Now,

    \(\sin ^{-1} {x}+\cos ^{-1} {y}=\frac{2 \pi}{5}\)

    From equation (i) and (ii) we get,

    \(\Rightarrow \frac{\pi}{2}-\cos ^{-1} {x}+\frac{\pi}{2}-\sin ^{-1} {y}=\frac{2 \pi}{5}\)

    \(\Rightarrow \cos ^{-1} {x}+\sin ^{-1} {y}=\frac{3 \pi}{5}\)

  • Question 6
    1 / -0

    If \(\sin x+\operatorname{sin}^{2} x=1\), then \(\cos ^{4} x+\cos ^{2} x\) is equal to:

    Solution

    Given,

    \(\sin x+\operatorname{sin}^{2} x=1\)

    \(\Rightarrow \sin x=1-\sin ^{2} x\) \(\quad\quad (\because 1 - \sin ^{2} \theta =\cos ^{2} \theta)\)

    \(\Rightarrow \sin x=\cos ^{2} x \quad\) ......(i)

    Sqauring both in equation (i) we get,

    \(\sin ^{2} x=\cos ^{4} x\)

    \(\Rightarrow 1-\cos ^{2} x=\cos ^{4} x \) \(\quad\quad (\because \sin ^{2} \theta =1 - \cos ^{2} \theta)\)

    \(\cos ^{4} x+\cos ^{2} x=1\)

  • Question 7
    1 / -0

    Let the six numbers\(a_1, a_2, a_3, a_4, a_5, a_6\) be in A.P. and \(a_1+a_3=10\). If the mean of these six numbers \(\frac{19}{2}\) and their variance is \(\sigma^2\), then \(8 \sigma^2\) is equal to :

    Solution

    \( a_1+a_3=10=a_1+d \Rightarrow 5 \\\)

    \(a_1+a_2+a_3+a_4+a_5+a_6=57 \\\)

    \(\Rightarrow \frac{6}{2}\left[a_1+a_6\right]=57 \\\)

    \( \Rightarrow a_1+a_6=19 \\\)

    \( \Rightarrow 2 a_1+5 d=19 \text { and } a_1+d=5 \\\)

    \( \Rightarrow a_1=2, d=3 \\\)

    \(\text { Numbers: } 2,5,8,11,14,17 \\\)

    \( \text { Variance }=\sigma^2=\text { mean of squares-square of mean } \\\)

    \( =\frac{2^2+5^2+8^2+(11)^2+(14)^2+(17)^2}{6}-\left(\frac{19}{2}\right)^2 \\\)

    \( =\frac{699}{6}-\frac{361}{4}=\frac{105}{4} \\\)

    \( 8 \sigma^2=210\)

  • Question 8
    1 / -0

    Let \(f: R \rightarrow R\) be defined as \(f(x)=3 x\). Choose the correct answer.

    Solution

    Here, \(f : R \rightarrow R\) is defined as \(f(x)=3 x\)

    Let \(x, y \in R\) such that \(f(x)=f(y)\), then:

    \( 3 x=3 y\)

    \( x=y\)

    \(\therefore f\) is one-one.

    Also, for any real number \((y)\) in co-domain \(R\), there exists \(\frac{y}{3}\) in \(R\) such that:

    \(f\left(\frac{y}{3}\right)=3\left(\frac{y}{3}\right)=y\)

    \(\therefore f\) is onto.

    Therefore, function \(f\) is one-one and onto.

  • Question 9
    1 / -0

    The general solution of \(\frac{d y}{d x}+y \tan x=2 \sin x\) is:

    Solution

    Differential equation of the form,

    \(\frac{d y}{d x}+P y=Q\)

    Where \(P =\tan x\) and \(Q =2 \sin x\)

    Integrating factor (I.F) of the equation is given by

    \(I. F=e^{\int P d x}\)

    \(I. F=e^{\int \tan x d x}=e^{\log \sec x}=\sec x\)

    Its solution is

    \( y \times(I . F)=\int[Q \times(I . F)] d x+C \)

    \( y \sec x=\int[2 \sin x \times \sec x] d x+C \)

    \( =\int\left[2 \sin x \times \frac{1}{\cos x}\right] d x+C\)

    \( =\int[2 \tan x] d x+C=2 \log \sec x+C \)

    \( y=\frac{2 \log \sec x+C}{\sec x} \)

    \( =\frac{\log \sec ^2 x+C}{\sec x}\)

  • Question 10
    1 / -0

    The area of a triangle with vertices \((-3,0),(3,0)\) and \((0, k)\) is 9 sq units, then the value of \(k\) will be:

    Solution

    The area of a triangle with vertices \((-3,0),(3,0)\) and \((0, k)\) is 9 sq units

    Area of a triangle with vertices \(\left(x_1, y_1\right),\left(x_2, y_2\right)\) and \(\left(x_3, y_3\right)\) is given by,

    \(\Delta=\frac{1}{2}\left|\begin{array}{lll}x_1 & y_1 & 1 \\x_2 & y_2 & 1 \\x_3 & y_3 & 1\end{array}\right|\)

    \(\therefore \Delta=\frac{1}{2}\left|\begin{array}{ccc}-3 & 0 & 1 \\3 & 0 & 1 \\0 & k & 1\end{array}\right|\)

    \(9=\frac{1}{2}[-3(-k)-0+1(3 k)]\)

    \(\Rightarrow 18=3 k+3 k=6 k\)

    \(\therefore k=\frac{18}{6}=3\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now