Self Studies

Mathematics Test - 23

Result Self Studies

Mathematics Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Find the general solution of given differential equation \(\frac{x d y}{d x}+3 y=4 x^3 ?\)

    Solution

    Given that,

    \(\Rightarrow \frac{ xdy }{ dx }+3 y =4 x ^3\)

    Now,

    \(\Rightarrow \frac{ dy }{ dx }+\frac{3 y }{ x }=4 x ^2\)

    By comparing with \(\frac{ dy }{ dx }+ Py = Q\)

    \( \Rightarrow P=\frac{3 } x \text { and } Q=4 x^2 \)

    \( \Rightarrow \text { I.F. }=e^{\int P d x}=e^{\int \frac{3}{x} d x} \)

    \(\Rightarrow \text { I.F. }=e^{3 \ln x} \)

    \( \Rightarrow \text { I.F. }=e^{\ln x^3}\)

    \( \Rightarrow \text { I.F. }=x^3\left(\because e^{\ln x}=x\right)\)

    Now general solution will be,

    \( \Rightarrow y \cdot( I \cdot F \cdot)=\int( Q \cdot( I \cdot F \cdot)) dx + c \)

    \( \Rightarrow y \cdot\left( x ^3\right)=\int\left(4 x ^2 \cdot\left( x ^3\right)\right) dx + c\)

    \( \Rightarrow x ^3 \cdot y =\int 4 x ^5 dx + c \)

    \( \Rightarrow x ^3 \cdot y =4 \frac{ x ^6}{6}+ c \)

    \( \Rightarrow x^3 \cdot y=\frac{2}{3} \cdot x^6+c\)

  • Question 2
    1 / -0

    Find the distance between the planes 2x - 3y + 6z - 5 = 0 and 6x - 9y + 18z + 20 = 0.

    Solution

    Given,

    Two planes \(2 x-3 y+6 z-5=0\) and \(6 x-9 y+18 z+20=0\)

    The plane \(6 x-9 y+18 z+20=0\) can be re-written as \(2 x-3 y+6 z+\frac{20 }{ 3}=0\).

    So, the planes \(2 x-3 y+6 z-5=0\) and \(2 x-3 y+6 z+\frac{20 }{ 3}=0\) are parallel.

    As we know that, distance between two parallel planes \(ax +b y+c z+d_{1}=0\) and \(a x+b y+c z+d_{2}=0\) is given by,

    \(\left|\frac{d_{1}-d_{2}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|\)

    \(\therefore d_{1}=-5, d_{2}=\frac{20 }{ 3}, a=2, b=-3\) and \(c=6\)

    So, the distance between the given parallel planes \(=\left|\frac{-5-\frac{20}{3}}{\sqrt{2^{2}+(-3)^{2}+6^{2}}}\right|\)

    \(=\left|\frac{\frac{-15-20}{3}}{\sqrt{4+9+36}}\right|\)

    \(=\left|\frac{\frac{-35}{3}}{\sqrt{49}}\right|\)

    \(=\left|\frac{-35}{7\times 3}\right|\)

    \(=\frac{5}{3}\) units

  • Question 3
    1 / -0

    The region represented by \(\{\mathrm{z}=\mathrm{x}+\mathrm{iy} \in \mathrm{C}:|\mathrm{z}|-\operatorname{Re}(\mathrm{z}) \leq 1\}\) is also given by the inequality:

    Solution

    \(\because|z|-\operatorname{Re}(z) \leq 1(\because z=x+i y) \\\)

    \(\Rightarrow \sqrt{x^2+y^2}-x \leq 1 \Rightarrow \sqrt{x^2+y^2} \leq 1+x \\\)

    \(\Rightarrow x^2+y^2 \leq 1+x^2+2 x \\\)

    \(\Rightarrow y^2 \leq 1+2 x \Rightarrow y^2 \leq 2\left(x+\frac{1}{2}\right)\)

  • Question 4
    1 / -0

    Let \(y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1

    Solution

    \(y=\log _e\left(\frac{1-x^2}{1+x^2}\right) \\\)

    \(\frac{d y}{d x}=y^{\prime}=\frac{-4 x}{1-x^4}\)

    Again,

    \(\frac{d^2 y}{d x^2}=y^{\prime \prime}=\frac{-4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}\)

    Again

    \(y^{\prime}-y^{\prime \prime}=\frac{-4 x}{1-x^4}+\frac{4\left(1+3 x^4\right)}{\left(1-x^4\right)^2}\)

    at \(\mathrm{x}=\frac{1}{2}\),

    \(\mathrm{y}^{\prime}-\mathrm{y}^{\prime \prime}=\frac{736}{225}\)

    Thus \(225\left(y^{\prime}-y^{\prime \prime}\right)=225 \times \frac{736}{225}=736\)

  • Question 5
    1 / -0

    If \(n \in N,\) then \(121^{n}-25^{n}+1900^{n}-(-4)^{n}\) is divisible by which one of the following?

    Solution
    \((121)^{n}-25^{n}+1900^{n}-(-4)^{n}\)
    For \(n=1\) 
    \(=121-25+1900-(-4)\)
    \(=121-25+1900+4\)
    \(=2025-25\)
    \(=2000\)
  • Question 6
    1 / -0
    The function \(f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)\) is defined for:
    Solution
    Given function is \(\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)\)
    Range of \(\sin x\) is \([-1,1] .\) so, \(\cos (-{ve})\) also positive value.
    \(\Rightarrow\) Defined for all real number .....(1)
    \(\sin ^{-1}(x)\) is defined for \(-1 \leq x \leq 1\)
    \(-1 \leq \frac{1+x^{2}}{2 x} \leq 1\)
    Case (1) \(x^{2}+1 \geq-2 x\)
    \((x+1)^{2} \geq 0\)
    Always positive and this is equal to zero when \(x=-1\)
    case (2) \(1+x^{2} \leq 2 x\)
    \((x-1)^{2} \leq 0\)
    This is equal to zero when \({x}=1\)
    The function domain will be inter section of \((1)\) and \((2)\) function
    For function (2) \(x \in\{-1,1\}\)
    The final answer for this is \({x} \in\{-1,1\}\)
  • Question 7
    1 / -0

    Given the sets \(A =\{2,3,4,5,6,7\}, B =\{6,7,8\}\) and \(C =\{1,5,8,9\}\) then find \(A \cap(B \cup C)\) and number of elements in \(A \cap(B \cup C)\)

    Solution

    Given:

    \(A=\{2,3,4,5,6,7\}, B=\{6,7,8\}\) and \(C=\{1,5,8,9\}\)

    Let, \(P=(B \cup C)\)

    \(=\{6,7,8\} \cup\{1,5,8,9\}\)

    \(=\{1,5,6,7,8,9\}\)

    \(\Rightarrow A \cap P=\{2,3,4,5,6,7\} \cap\{1,5,6,7,8,9\}\)

    \(\Rightarrow A \cap(B \cup C)=\{5,6,7\}\)

    Therefore, number of elements \(=3\)

  • Question 8
    1 / -0

    Let \(\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b}\) and \(\overrightarrow{O C}=\vec{b}\), where \(O\) is the origin. If \(S\) is the parallelogram with adjacent sides \(\mathrm{OA}\) and \(\mathrm{OC}\), then \(\frac{\text { area of the quadrilateral } O A B C}{f S}\) is equal to:

    Solution

    \( \text { Area of parallelogram, } \mathrm{S}=|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| \\\)

    \( \text { Area of quadrilateral }=\operatorname{Area}(\triangle \mathrm{OAB})+\operatorname{Area}(\triangle \mathrm{OBC}) \\\)

    \( =\frac{1}{2}\{|\overrightarrow{\mathrm{a}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{b}})|+|\overrightarrow{\mathrm{b}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{b}})|\} \\\)

    \(=8|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})| \\\)

    \( \text { Ratio }=\frac{8|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|}{|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|}=8\)

  • Question 9
    1 / -0

    If \(\sec ^{2} \theta+\tan ^{2} \theta=7\) then, find the value of \(\sec \theta\):

    Solution

    Given,

    \(\sec ^{2} \theta+\tan ^{2} \theta=7\) ......(i)

    Adding 1 both sides in eqaution (i) we get,

    \(\sec ^{2} \theta+\tan ^{2} \theta+1=7+1\)

    \(\Rightarrow \sec ^{2} \theta+\sec ^{2} \theta=8\)\(\quad\quad(\because \ 1+\tan ^{2} \theta=\sec ^{2} \theta)\)

    \(\Rightarrow 2 \sec ^{2} \theta=8\)

    \(\Rightarrow \sec ^{2} \theta=4\)

    \(\Rightarrow\sec \theta=2\)

    \(\therefore \sec \theta=2\)

  • Question 10
    1 / -0

    If the position vectors of the vertices \(A, B\) and \(C\) of a \(\triangle A B C\) are respectively \(4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(2 \hat{i}+5 \hat{j}+7 \hat{k}\), then the position vector of the point, where the bisector of \(\angle \mathrm{A}\) meets \(\mathrm{BC}\) is:

    Solution

    Suppose angular bisector of \(A\) meets \(B C\) at \(D\left(x_z, y_z z\right)\)

    Using angular bisector theorem,

    \(\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}} \\\)

    \(\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\sqrt{(4-2)^2+(7-3)^2+(8-4)^2}}{\sqrt{(4-2)^2+(7-5)^2+(8-7)^2}} \\\)

    \( =\frac{\sqrt{2^2+4^2+4^2}}{\sqrt{2^2+2^2+1^2}}=\frac{6}{3}=2\)

    \( \text { So, } \mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv\left(\frac{(2)(2)+(1)(2)}{2+1}, \frac{(2)(5)+(1)(3)}{2+1}\right. \\\)

    \( \left.\frac{(2)(7)+(1)(4)}{2+1}\right) \\\)

    \( \mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \equiv\left(\frac{6}{3}, \frac{13}{3}, \frac{18}{3}\right)\)

    Therefore, position vector of point \(P=\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now