Self Studies

Mathematics Test - 24

Result Self Studies

Mathematics Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The sum of an infinite geometric series with positive terms is 3 and the sum of the cubes of its terms is \(\frac{27}{19}\). Then the common ratio of this series is :

    Solution

    Let the terms of infinite series are \(a, a r, a r^2, a r^3, \ldots\)

    So, \(\frac{\mathrm{a}}{1-\mathrm{r}}=3\)

    Since, sum of cubes of its terms is \(\frac{27}{19}\) that is sum of \(a^3\), \(a^3 r^3, \ldots \infty\) is \(\frac{27}{19}\)

    So, \(\frac{\mathrm{a}^3}{1-\mathrm{r}^3}=\frac{27}{19}\)

    \(\Rightarrow \frac{\mathrm{a}}{1-\mathrm{r}} \times \frac{\mathrm{a}^2}{\left(1+\mathrm{r}^2+\mathrm{r}\right)}=\frac{27}{19}\)

    \(\Rightarrow \frac{9\left(1+\mathrm{r}^2-2 \mathrm{r}\right) \times 3}{1+\mathrm{r}^2+\mathrm{r}}=\frac{27}{19}\)

    \(\Rightarrow 6 \mathrm{r}^2-13 \mathrm{r}+6=0\)

    \(\Rightarrow(3 \mathrm{r}-2)(2 \mathrm{r}-3)=0\)

    \(\Rightarrow \mathrm{r}=\frac{2}{3}\), or \(\frac{3}{2}\)

    As \(|\mathrm{r}|<1\)

    So, \(\mathrm{r}=\frac{2}{3}\)

  • Question 2
    1 / -0

    Let \(Z\) be the set of all integers, \(A=\left\{(x, y) \in Z \times Z:(x-2)^2+y^2 \leq 4\right\}\), \(B=\left\{(x, y) \in Z \times Z: x^2+y^2 \leq 4\right\}\) and

    \(C=\left\{(x, y) \in Z \times Z:(x-2)^2+(y-2)^2 \leq 4\right\}\) If the total number of relation from \(A \cap B\) to \(A \cap B\) is \(2^p\) then the value of \(p\) is:

    Solution

  • Question 3
    1 / -0

    Evaluate the integral \(\int_{-1}^{1} \frac{5 x^{4}}{\sqrt{x^{5}+3}} d x\).

    Solution

    Let, \(\mathrm{I}=\int_{-1}^{1} \frac{5 x^{4}}{\sqrt{x^{5}+3}} d x\)

    Let \(x^{5}+3=t\) \(\quad\dots\dots(i)\)

    Differentiating w.r.t \(x\), we get

    \(5 x^{4} =\frac{d t}{dx}\)

    \(5 x^{4} d x=d t\)

    The new limits to \(eq^{n}(i)\)

    When \(x=-1,=({-1}^{5}+3)\), \(t=2\)

    Similarly,

    When \(x=1, \mathrm{t}=4\)

    \(\therefore \int_{-1}^{1} \frac{5 x^{4}}{\sqrt{x^{5}+3}} d x=\int_{2}^{4} \frac{d t}{\sqrt{t}} \)

    \(=[2 \sqrt{t}]_{2}^{4}\)

    Put the value of limit,

    \(=2(\sqrt{4}-\sqrt{2})\)

    \(=4-2 \sqrt{2}\)

  • Question 4
    1 / -0

    Find the value of \(\operatorname{det}(3 A )\) for the following matrix.

    \(A=\left[\begin{array}{ccc}4 & 7 & 1 \\ -1 & 3 & 2 \\ -2 & 0 & 5\end{array}\right]\)

    Solution

    If \(A\) be a \(3 \times 3\) matrix given by:

    \(A=\left[\begin{array}{lll}a & b & c \\ f & e & d \\ g & h & i\end{array}\right]\)

    then the value of \(| A |\) also written as \(\operatorname{det}( A )\)

    \(\operatorname{det}(A)=a(e i-d h)-b(f i-d g)+c(f h-e g)\)

    \(A=\left[\begin{array}{ccc}4 & 7 & 1 \\ -1 & 3 & 2 \\ -2 & 0 & 5\end{array}\right]\)

    \(\therefore \operatorname{det}(A)=4(15-0)-7(-5+4)+1(0+6)\)

    \(=4(15)-7(-1)+1(6)\)

    \(=60+7+6\)

    \(=73\)

    Now, If \(A\) be a matrix of order \(n \times n\) and \(\operatorname{det}( A )= k\). Then for a scaler \(c\), the following property holds:

    \(\operatorname{det}(c A)=c^{n} \operatorname{det}(A)\)

    \(\therefore \operatorname{det}(3 A )=3^{3} \operatorname{det}( A )\)

    \(=27 \times 73\)\(=1971\)

  • Question 5
    1 / -0

    If \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\) and \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\) are matrices, then \(AB + BA\) is:

    Solution
    Given,
    \(A =\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(B =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\)
    \(\therefore AB =\left[\begin{array}{rr}
    0 & - i \\
    i & 0
    \end{array}\right] \times\left[\begin{array}{rr}
    1 & 0 \\
    0 & -1
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0+0 & 0+ i \\
    i +0 & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]\)
    And \(BA =\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] \times\left[\begin{array}{rr}0 & - i \\ i & 0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0+0 & - i +0 \\ 0- i & 0+0\end{array}\right]\)
    \(=\left[\begin{array}{rr}0 & - i \\ - i & 0\end{array}\right]\)
    \(\therefore A B+B A=\left[\begin{array}{ll}
    0 & i \\
    i & 0
    \end{array}\right]+\left[\begin{array}{rr}
    0 & -i \\
    -i & 0
    \end{array}\right]\)
    \(=\left[\begin{array}{cc}
    0+0 & i-i \\
    i-i & 0+0
    \end{array}\right]\)
    \(=\left[\begin{array}{ll}
    0 & 0 \\
    0 & 0
    \end{array}\right]\)
    So, \(AB+BA\) is a null matrix.
  • Question 6
    1 / -0

    Let \(f(x)=2 x^{3}+\frac{1}{x}\), then \(f'(1)\) is:

    Solution

    Given:

    \(\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\frac{1}{\mathrm{x}}\)

    We know that:

    If \(f(x)=x^{n}\), then:

    \(f'(x)=n x^{n-1}\)

    Differentiating with respect to x, we get:

    \(f'(x)=6 x^{2}-\frac{1}{x^{2}}\)

    Putting \(x=1\) in above, we get:

    \(f'(1)=6 \times 1^{2}-\frac{1}{1^{2}}\)

    \(f'(1)=6-1=5\)

    \(\therefore\) The value of \(f^{\prime}(1)\) is 5.

  • Question 7
    1 / -0

    Find the area bounded by the curve \({y}=\sin {x}\) between \({x}=0\) and \({x}=2 \pi\).

    Solution

     \({y}=\sin {x}\)

    The graph of \(y=\sin x\) can be drawn as shown in the diagram:

    \(\therefore\) Required area \(=\) Area \(O A B O+\) Area \(B C D B\)

    \(=\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right|\)

    \(=[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right|\)

    \(=[-\cos \pi+\cos 0]+\left|-\cos 2 \pi+\cos \pi\right|\)

    \(=1+1+|(-1-1)|\)

    \(=2+|-2|\) \(=2+2\) \(=4\) sq. units

  • Question 8
    1 / -0

    If the distances of \(\mathrm{P}(x, y)\) from \(\mathrm{A}(4,1)\) and \(\mathrm{B}(-1,4)\) are equal, then which of the following is true?

    Solution

    Given,

    The distances of \(\mathrm{P}(x, y)\) from \(\mathrm{A}(4,1)\) and \(\mathrm{B}(-1,4)\) are equal.

    The distance ' \(d\) ' between two points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is obtained by using the Pythagoras' Theorem: \(d^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\).

    Using the formula for the distance between two points:

    \(\mathrm{AP}^{2}=(x-4)^{2}+(y-1)^{2}\)

    \(\mathrm{BP}^{2}=(x+1)^{2}+(y-4)^{2}\)

    Since the distances are equal, we have:

    \(\mathrm{AP}^{2}=\mathrm{BP}^{2} \)

    \(\Rightarrow(x-4)^{2}+(y-1)^{2}=(x+1)^{2}+(y-4)^{2}\)

    \(\Rightarrow x^{2}-8 x+16+y^{2}-2 y+1=x^{2}+2 x+1+y^{2}-8 y+16 \)

    \(\Rightarrow 10 x=6 y\)

    \(\Rightarrow 5 x=3 y\)

  • Question 9
    1 / -0

    \(\tan \left(2 \tan ^{-1}(\cos x)\right)\) is equal to?

    Solution

    Given,

    \(\tan \left(2 \tan ^{-1}(\cos x)\right)\)

    As we know, \(2 \tan ^{-1} x =\tan ^{-1} \frac{2 x }{1- x ^{2}}\)

    Therefore,

    \(2 \tan ^{-1} \cos x=\tan ^{-1} \frac{2 \cos x}{1-\cos ^{2} x}\)

    \(=\tan ^{-1} \frac{2 \cos x}{\sin ^{2} x}\)\(\quad(\because 1 - cos^2{x} =sin^2{x})\)

    \(=\tan ^{-1}(2 \cot x \operatorname{cosec} x)\)

    \(\tan \left(\tan ^{-1}(2 \cot x \operatorname{cosec} x)\right)=2 \cot x \operatorname{cosec} x \quad\left(\because \tan \left(\tan ^{-1} x\right)=x\right)\)

  • Question 10
    1 / -0

    Tickets numbered \(1\) to \(20\) are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of \(3\) or \(5\) ?

    Solution

    Here, \(S=\{1,2,3,4, \ldots ., 19,20\}\)

    Let \(E=\) event of getting a multiple of \(3\) or \(5\)

    \(=\{3,6,9,12,15,18,5,10,20\}\)

    \(\therefore P(E)=\frac{n(E)}{n(S)}=\frac{9}{20}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now