Self Studies

Mathematics Test - 25

Result Self Studies

Mathematics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    An integer is chosen at random from the integers \(1,2,3, \ldots, 50\). The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is:

    Solution

    Given set \(=\{1,2,3, \ldots \ldots . .50\}\)

    \(\mathrm{P}(\mathrm{A})=\) Probability that number is multiple of 4

    \(P(B)=\) Probability that number is multiple of 6

    \(\mathrm{P}(\mathrm{C})=\) Probability that number is multiple of 7

    Now,

    \(\mathrm{P}(\mathrm{A})=\frac{12}{50}, \mathrm{P}(\mathrm{B})=\frac{8}{50}, \mathrm{P}(\mathrm{C})=\frac{7}{50}\)

    again

    \(\begin{aligned} & P(A \cap B)=\frac{4}{50}, P(B \cap C)=\frac{1}{50}, P(A \cap C)=\frac{1}{50} \\ & P(A \cap B \cap C)=0\end{aligned}\)

    Thus

    \( P(A \cup B \cup C)=\frac{12}{50}+\frac{8}{50}+\frac{7}{50}-\frac{4}{50}-\frac{1}{50}-\frac{1}{50}+0 \\\)

    \( =\frac{21}{50}\)

  • Question 2
    1 / -0
    \(2\left(2 \cos ^{2} \theta-1\right) \cos 6 \theta\) is equal to:
    Solution
    Given,
    \(2\left(2 \cos ^{2} \theta-1\right) \cos 6 \theta\)
    \(=2 \cos 2 \theta \cos 6 \theta\) \(\left(\because \cos 2 \theta=2 \cos ^{2} \theta-1\right)\)
    \(=2 \cos 6 \theta \cos 2 \theta\)
    As we know that,
    \(2 \cos x \cos y=\cos (x+y)+\cos (x-y)\)
    \(\therefore 2 \cos 6 \theta \cos 2 \theta=\cos (6 \theta+2 \theta)+\cos (6 \theta-2 \theta)\)
    \(=\cos 8 \theta+\cos 4 \theta\)
  • Question 3
    1 / -0

    Let \(A=\left[\begin{array}{llc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]\) and \(P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]\). The sum of the prime factors of \(\left|\mathrm{P}^{-1} \mathrm{AP}-2 \mathrm{I}\right|\) is equal to:

    Solution

    \(\left|P^{-1} A P-2 I\right|=\left|P^{-1} A P-2 P^{-1} P\right| \\\)

    \( =\left|P^{-1}(A-2 I) P\right| \\\)

    \( =\left|P^{-1}\right||A-2 I||P| \\\)

    \( =|A-2 I| \\\)

    \(=\left|\begin{array}{ccc}0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0\end{array}\right|=69\)

    So, Prime factor of 69 is \(3 \& 23\)

    So, sum \(=26\)

  • Question 4
    1 / -0

    Let \(\mathrm{f}:[-1,3] \rightarrow R\) be defined as

    \(f(x)=\left\{\begin{array}{cc}|x|+[x], & -1 \leq x<1 \\ x+|x|, & 1 \leq x<2 \\ x+[x], & 2 \leq x \leq 3\end{array}\right.\)

    where \([t]\) denotes the greatest integer less than or equal to \(t\). Then, \(f\) is discontinuous at:

    Solution

    Given function is,

    \(\begin{aligned} & f(x)=\left\{\begin{array}{cc}|x|+[x], & -1 \leq x<1 \\ x+|x|, & 1 \leq x<2 \\ x+[x], & 2 \leq x \leq 3\end{array}\right. \\ & =\left\{\begin{array}{cc}-x-1, & -1 \leq x<0 \\ x, & 0 \leq x<1 \\ 2 x, & 1 \leq x<2 \\ x+2, & 2 \leq x<3 \\ 6, & x=3\end{array}\right. \\ & \end{aligned}\)

    \(\Rightarrow \mathrm{f}(-1)=0, \mathrm{f}\left(-1^{+}\right)=0 \\\)

    \( \mathrm{f}\left(0^{-}\right)=-1, \mathrm{f}(0)=0, \mathrm{f}\left(0^{+}\right)=0 \\\)

    \( \mathrm{f}\left(1^{-}\right)=1, \mathrm{f}(1)=2, \mathrm{f}\left(1^{+}\right)=2 \\\)

    \( \mathrm{f}\left(2^{-}\right)=4, \mathrm{f}(2)=4, \mathrm{f}\left(2^{+}\right)=4 \\\)

    \( \mathrm{f}\left(3^{-}\right)=5, \mathrm{f}(3)=6\)

    \(\mathrm{f}(\mathrm{x})\) is discontinuous at \(\mathrm{x}=\{0,1,3\}\)

    Hence, \(f(x)\) is discontinuous at only three points.

  • Question 5
    1 / -0

    Let \(\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}\).

    If \(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b} \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}\), then \(|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2\) is equal to:

    Solution

    \(\begin{aligned} & \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k} \\ & \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k} \\ & \Rightarrow(\vec{b}-\vec{a}) \times\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b}=8 \hat{i}-40 \hat{j}-24 \hat{k} \\ & \Rightarrow\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b}(\vec{a} \times \vec{b})=8 \hat{i}-40 j-24 \hat{k} \\ & \Rightarrow 8(\vec{a} \times \vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}\end{aligned}\)

    Now, \(\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \lambda & 2 & -3 \\ 1 & -\lambda & 2\end{array}\right|\)

    \(\begin{aligned} & =(4-3 \lambda) \hat{i}-(2 \lambda+3) \hat{j}+\left(-\lambda^2-2\right) \hat{k} \\ & \Rightarrow \lambda=1 \\ & \therefore \vec{a}=\hat{i}+2 \hat{j}-3 \hat{k} \\ & \vec{b}=\hat{i}-\hat{j}+2 \hat{k} \\ & \Rightarrow \vec{a}+\vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{a}-\vec{b}=3 \hat{j}-5 \hat{k}\end{aligned}\)

    \(\Rightarrow(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 0 & 3 & -5\end{array}\right|=2 \hat{i}+10 \hat{j}+6 \hat{k}\)

     required answer =4+100+36=140

  • Question 6
    1 / -0

    If \(\vec{a}, \vec{b}, \vec{c}\) are three non-zero vectors and \(\hat{n}\) is a unit vector perpendicular to \(\overrightarrow{\mathrm{c}}\) such that \(\overrightarrow{\mathrm{a}}=\alpha \overrightarrow{\mathrm{b}}-\hat{\mathrm{n}},(\alpha \neq 0)\) and \(\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=12\), then \(|\overrightarrow{\mathrm{c}} \times(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|\) is equal to:

    Solution

  • Question 7
    1 / -0

    Using the principle of mathematical induction, prove that \(1 \times 3+2 \times 3^{2}+3 \times 3^{3}+\ldots+n \times 3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}\) for all:

    Solution

    Given:

    \(P(n): 1 \times 3+2 \times 3^{2}+3 \times 3^{3}+\ldots+n \times 3^{n} \) \(=\frac{(2 n-1) 3^{n+1}+3}{4} \)

    For \( n=1,\)

    \(\text {L H.S }=1 \times 3=3\) and R.H.S. \(=\frac{(2 \times 1-1) 3^{1+1}+3}{4}=\frac{3^{2}+3}{4}=\frac{12}{4}=3\)

    Thus \(\mathrm{P}(1)\) is true.

    \(P(n)\) be true for some \(n=k\).

    \(1 \times 3+2 \times 3^{2}+3 \times 3^{3}+\ldots+k \times 3^{k}\) \(=\frac{(2 k-1) 3^{k+1}+3}{4}\)

    Now, \(P(n)\) is true for \(n=k+1\).

    \(1 \times 3+2 \times 3^{2}+3 \times 3^{3}+\ldots+(k+1) \times 3^{k+1}\) \(=\frac{(2 k+1) 3^{k+2}+3}{4}\)

    Adding \((k+1) \times 3^{k+1}\) on both sides, we get

    \(1 \times 3+2 \times 3^{2}+3 \times 3^{3}+\ldots+k \times 3^{k}+(k+1) \times 3^{k+1} \) \(=\frac{(2 k-1) 3^{k+1}+3}{4}+(k+1) \times 3^{k+1} \)

    \(=\frac{(2 k-1) 3^{k+1}+3 \mid 4(k+1) 3^{k+1}}{4} \)

    \(=\frac{3^{k+1}[2 k-1+4(k+1)]+3}{4} \)

    \(=\frac{3^{k+1}(6 k+3)+3}{4} \)

    \(=\frac{3^{(k+1)+1}(2 k+1)+3}{4} \)

    \(=\frac{(2 k+1) 3^{k+2}+3}{4}\)

    Thus, \(P(k+1)\) is true whenever \(P(k)\) is true.

    By the principle of mathematical induction, statement P(n) is true for all natural numbers.

  • Question 8
    1 / -0

    If \(4 x+3<6 x+7\), then \(x\) belongs to the interval

    Solution

    Given,

    \(4 x+3<6 x+7\)

    Subtracting 3 from both sides.

    \(4 x+3-3<6 x+7-3\)

    \(\Rightarrow 4 x<6 x+4\)

    Subtracting \(6 x\) from both sides,

    \(4 x-6 x<6 x+4-6 x \)

    \(\Rightarrow-2 x<4 \text { or }\)

    \(\Rightarrow x>-2\) i.e., all the real numbers greater than \(-2\), are the solutions of the given inequality.

    So, the solution set is \((-2, \infty)\), i.e. \(x \in(-2, \infty)\)

  • Question 9
    1 / -0

    Evaluate the expression: \(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=?\)

    Solution

    Given, \(\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\left.\frac{(1+\cos \theta) \times(1+\cos \theta))}{(1-\cos \theta) \times(1+ \cos \theta) }\right)} \quad \text { (By rationalization) }\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{(1+\cos \theta)^{2}}{1-\cos ^{2} \theta}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}}\)\(\quad \left(\because 1-\cos ^{2} x=\sin ^{2} x\right)\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\sqrt{\left(\frac{1+\cos \theta}{\sin  \theta}\right)^{2}}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\frac{1+\cos \theta}{\sin  \theta}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\) = \(\frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}\)

    \(\Rightarrow \sqrt{\frac{1+\cos \theta}{1-\cos \theta}}\) = \(\operatorname{cosec} \theta+\cot \theta\) \(\quad\quad (\because\operatorname{cosec} x=\frac{1}{\sin x},\cot x=\frac{\cos x}{\sin x})\)

  • Question 10
    1 / -0

    \(\text { If } A=\{x \in R:|x|<2\} \text { and } B=\{x \in R:|x-2| \geq 3\} \text {; then : }\)

    Solution
    A={x:x(2,2)}

    B={x:x(,1][5,)}
    AB={x:x(2,1]}
    AB={x:x(,2)[5,)}
    AB={x:x(1,2)}
    BA={x:x(,2][5,)}

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now