Self Studies

Mathematics Test - 26

Result Self Studies

Mathematics Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(f: R \rightarrow R\) and \(g: R \rightarrow R\) are two mappings defined as \(f(x)=2 x\) and \(g(x)=x^{2}+2\), then the value of \((f+g)(2)\) is:

    Solution

    Given, \(f(x)=2 x, g(x)=x^{2}+2\)

    then, \((f+g)(2)=f(2)+g(2)\)

    \(=(2 \times 2)+\left(2^{2}+2\right)\)

    \(=4+6\)

    \(=10\)

  • Question 2
    1 / -0

    If \((a, b)\) be the orthocentre of the triangle whose vertices are \((1,2),(2,3)\) and \((3,1)\), and \(I_1=\int_a^b x \sin \left(4 x-x^2\right) d x, I_2=\int_a^b \sin \left(4 x-x^2\right) d x\), then \(36 \frac{I_1}{I_2}\) is equal to :

    Solution

  • Question 3
    1 / -0

    The slope of the line perpendicular to the line passing through the points \((3,2)\) and \((1,-1)\) is:

    Solution

    Given,

    The line passing through the points \((3,2)\) and \((1,-1)\)

    Equation of a line passing through \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is:

    \(\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)

    Therefore,

    \(\frac{y-2}{x-3}=\frac{-1-2}{1-3} \)\(\quad\quad(\because \frac{y-2}{x-3}=\frac{-1-2}{1-3} )\)

    \(3 x-2 y-5=0\)

    \(y=\frac{3}{2} x-\frac{5}{2} \)

    \(\Rightarrow \text { Slope }\left(m_{1}\right)=\frac{3}{2} \text { and } c_{1}=\frac{-5}{2}\)

    Now for the slope of the perpendicular line \(\left(\mathrm{m}_{2}\right)\)

    \(\mathrm{m}_{1} \times \mathrm{m}_{2}=-1 \)

    \(\Rightarrow \frac{3}{2} \times \mathrm{m}_{2}=-1 \)

    \(\Rightarrow \mathrm{m}_{2}=\frac{-2}{3}\)

  • Question 4
    1 / -0

    If \(\int_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}\), where \(a, b, c\) are rational numbers, then \(2 a+3 b-4 c\) is equal to :

    Solution

    \( \int_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=\int_0^1 \frac{\sqrt{3+x}-\sqrt{1+x}}{(3+x)-(1+x)} d x \\\)

    \( \frac{1}{2}\left[\int_0^1 \sqrt{3+x} d x-\int_0^1(\sqrt{1+x}) d x\right] \\\)

    \( \frac{1}{2}\left[2 \frac{(3+x)^{\frac{3}{2}}}{3}-\frac{2(1+x)^{\frac{3}{2}}}{3}\right]_0^1 \\\)

    \( \frac{1}{2}\left[\frac{2}{3}(8-3 \sqrt{3})-\frac{2}{3}\left(2^{\frac{3}{2}}-1\right)\right] \\\)

    \( \frac{1}{3}[8-3 \sqrt{3}-2 \sqrt{2}+1] \\\)

    \( =3-\sqrt{3}-\frac{2}{3} \sqrt{2}=a+b \sqrt{2}+c \sqrt{3} \\\)

    \( a=3, b=-\frac{2}{3}, c=-1 \\\)

    \( 2 a+3 b-4 c=6-2+4=8\)

  • Question 5
    1 / -0

    Let \(a_1, a_2, a_3, \ldots, a_n\) be \(n\) positive consecutive terms of an arithmetic progression. If \(d>0\) is its common difference, then :

    \(\lim _{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{1}{\sqrt{a_1}+\sqrt{a_2}}+\frac{1}{\sqrt{a_2}+\sqrt{a_3}}+\ldots \ldots .+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_n}}\right) \text { is }\)

    Solution

    \(\begin{aligned} & \operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_1}-\sqrt{a_2}}{a_1-a_2}+\frac{\sqrt{a_2}-\sqrt{a_3}}{a_2-a_3}+\ldots . .+\frac{\sqrt{a_{n-1}}-\sqrt{a_n}}{a_{n-1}-a_n}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_1}-\sqrt{a_2}+\sqrt{a_2}+\sqrt{a_3}+\ldots . .+\sqrt{a_{n-1}}-\sqrt{a_n}}{-d}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \sqrt{\frac{d}{n}}\left(\frac{\sqrt{a_n}-\sqrt{a_1}}{d}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{\sqrt{a_1+(n-1) d}-\sqrt{a_1}}{\sqrt{d}}\right) \\ & =\operatorname{Lt}_{n \rightarrow \infty} \frac{1}{\sqrt{d}}\left(\sqrt{\frac{a_1}{n}+d-\frac{d}{n}}-\frac{\sqrt{a_1}}{n}\right) \\ & =1\end{aligned}\)

  • Question 6
    1 / -0

    If \(2 \tan ^2 \theta-5 \sec \theta=1\) has exactly 7 solutions in the interval \(\left[0, \frac{n \pi}{2}\right]\), for the least value of \(n \in N\) then \(\sum_{k=1}^n \frac{k}{2^k}\) is equal to:

    Solution

    \(2 \tan ^2 \theta-5 \sec \theta-1=0 \\\)

    \( \Rightarrow 2 \sec ^2 \theta-5 \sec \theta-3=0 \\\)

    \( \Rightarrow(2 \sec \theta+1)(\sec \theta-3)=0 \\\)

    \( \Rightarrow \sec \theta=-\frac{1}{2}, 3 \\\)

    \( \Rightarrow \cos \theta=-2, \frac{1}{3} \\\)

    \( \Rightarrow \cos \theta=\frac{1}{3}\)

    For 7 solutions \(n=13\)

    \(\text { So, } \sum_{\mathrm{k}=1}^{13} \frac{\mathrm{k}}{2^{\mathrm{k}}}=\mathrm{S} \text { (say) } \\\)

    \( \mathrm{S}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\ldots+\frac{13}{2^{13}} \\\)

    \( \frac{1}{2} \mathrm{~S}=\frac{1}{2^2}+\frac{1}{2^3}+\ldots+\frac{12}{2^{13}}+\frac{13}{2^{14}} \\\)

    \(\Rightarrow \frac{\mathrm{S}}{2}=\frac{1}{2} \cdot \frac{1-\frac{1}{2^{13}}}{1-\frac{1}{2}}-\frac{13}{2^{14}} \Rightarrow \mathrm{S}=2 \cdot\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}}\)

  • Question 7
    1 / -0

    If the mirror image of the point \((2,4,7)\) in the plane \(3 x-y+4 z=2\) is \((\mathrm{a}, \mathrm{b}, \mathrm{c})\), then \(2 \mathrm{a}+\mathrm{b}+2 \mathrm{c}\) is equal to:

    Solution

    We know mirror image of point \(\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)\) in the plane \(\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{d}\)

    \(\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}=\frac{-2\left(a x_1+b y_1+c z_1-d\right)}{a^2+b^2+c^2}\)

    Here given point \((2,4,7)\) and plane \(3 x-y+4 z=2\) then mirror image is

    \(\frac{x-2}{3}=\frac{y-4}{-1}=\frac{z-7}{4}=\frac{-2(6-4+28-2)}{9+1+16} \\\)

    \(\Rightarrow \frac{x-2}{3}=\frac{y-4}{-1}=\frac{z-7}{4}=-\frac{28}{13} \\\)

    \(\therefore x=-\frac{58}{13}=a \\\)

    \(y=\frac{80}{13}=b \\\)

    \(z=-\frac{21}{13}=c \\\)

    \(\therefore 2 a+b+2 c \\\)

    \(=2\left(-\frac{58}{13}\right)+\frac{80}{13}+2\left(-\frac{21}{13}\right) \\\)

    \(=\frac{-116+80-42}{13}=\frac{-78}{13}=-6\)

  • Question 8
    1 / -0

    If \(A=\left[\begin{array}{ccc}3 & 4 & 9 \\ 11 & 6 & 7 \\ 8 & 9 & 5\end{array}\right]\) and \(|2 \mathrm{~A}|=\mathrm{k}\) then find the value of \(\mathrm{k}\)?

    Solution

    Given,

    \(A=\left[\begin{array}{ccc}3 & 4 & 9 \\ 11 & 6 & 7 \\ 8 & 9 & 5\end{array}\right]\)

    \(|2 \mathrm{~A}|=\mathrm{k}\)

    \(\Rightarrow|\mathrm{A}|=3 \times(30-63)-4 \times(55-56)+9 \times(99-48)\)

    \(\Rightarrow|\mathrm{A}|=-99+4+459=364\)

    We know that,

    If \(\mathrm{A}\) is a matrix of order \(\mathrm{n}\), then \(|\mathrm{k} \cdot \mathrm{A}|=\mathrm{k}^{n} \cdot|\mathrm{A}|\)

    where \(\mathrm{k} \in \mathrm{R}\)

    \(\Rightarrow|2 \mathrm{~A}|=2^{3} \cdot 364=2912\)

  • Question 9
    1 / -0

    The optimal value of the objective function is attained at the points ________________.

    Solution

    The optimal value of the objective function is attained at the points given by corner points of the feasible region.Any point in the feasible region that gives the optimal value (maximum or minimum) of the objective function is called an optimal solution.The optimal value of the objective function \(Z=a x+by\) may or may not exist, if the feasible region for a LPP is unbounded.

  • Question 10
    1 / -0

    If \(P\) and \(Q\) are two sets, then \((P-Q) \cup(Q-P) \cup(P \cap Q)\) will be:

    Solution

    P - Q = The set of elements which belong to P but not to Q.

    P U Q = The set which consists of all elements of P and all elements of Q, the common elements being taken only once.

    P∩ Q = The set of all elements which are common to both Pand Q.

    let us supposeP = {1, 2, 3, 4} and Q = {3, 4, 5, 6}

    ⇒ P - Q = {1, 2}

    ⇒ Q - P = {5, 6}

    ⇒ P U Q = {1, 2, 3, 4, 5, 6}

    ⇒ P∩ Q = {3, 4}

    ⇒(P - Q) ∪ (Q - P) ∪ (P ∩ Q) = {1, 2} U {5, 6} U {3, 4} = {1, 2, 3, 4, 5, 6} = P U Q

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now