Given:
\(P(n): 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+n}=\frac{2 n}{n+1}\)
For \(\boldsymbol{n}=\mathbf{1}\)
L.H.S \(=1\) and R. H. S. \(=\frac{2 \times 1}{1+1}=\frac{2}{2}=1\)
Thus, \(P(1)\) is true.
Let \(P(n)\) be true for some \(n=k\)
\(1+\frac{1}{1+2}+\ldots+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}\) \(=\frac{2 k}{k+1}\)
Now, we have to prove that \(P(n)\) is true \(n=k+1\)
i.e., \(1+\frac{1}{1+2}+\ldots+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+(k+1)}\)
\(\frac{=2(k+1)}{k+2}\)
Adding \(\frac{1}{1+2+3+\ldots+(k+1)}\) on both sides of \((1)\), we get
\(1+\frac{1}{1+2}+\ldots+\frac{1}{1+2+3}+\ldots \frac{1}{1+2+3+\ldots+k}+\frac{1}{1+2+3+\ldots+(k+1)} \)
\(=\frac{2 k}{k+1}+\frac{1}{1+2+3+\ldots+(k+1)} \)
\(=\frac{2 k}{k+1)}+\frac{1}{\frac{(k+1)(k+2)}{2}} \)
\({\left[\text{Using}~ 1+2+3+\ldots+n=\frac{n(n+1)}{2}\right]} \)
\(=\frac{2 k}{(k+1)}+\frac{2}{(k+1)(k+2)} \)
\(=\frac{2}{k+1}\left(\frac{k(k+2)+1}{k+2}\right) \)
\(=\frac{2(k+1)^{2}}{(k+1)(k+2)} \)
\(=\frac{2(k+1)}{(k+2)}\)
Thus, \(P(k+1)\) is true whenever \(P(k)\) is true.
By the principle of mathematical induction, statement \(\mathrm{P}(\mathrm{n})\) is true for all natural numbers.