Self Studies

Mathematics Test - 28

Result Self Studies

Mathematics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The range of the real-valued function \(f(x)=\sqrt{9-x^{2}}\) is:

    Solution

    Given: \(f(x)=\sqrt{9-x^{2}}\)

    Let, \(y^{2}=9-x^{2}\)

    \(\Rightarrow x^{2}=9-y^{2}\)

    \(x=\sqrt{9-y^{2}} \quad\quad\ldots\)(1)

    We know that for any function \(f(x)=\sqrt{9-x^{2}}, y \geq 0\quad\quad \ldots\). (A)

    From equation (1).

    \(9-y^{2} \geq 0\)

    \(y^{2}-9 \leq 0\)

    \(\Rightarrow(y+3)(y-3) \leq 0\)

    \(\Rightarrow-3 \leq y \leq 3\)

    But from equation (A) y must be positive, then, \(y=[0,3]\).

    Range \(=\) the value of \({y}=[0,3]\)

  • Question 2
    1 / -0

    Let \(\mathrm{S}_{\mathrm{K}} \frac{1+2+\ldots+\mathrm{K}}{\mathrm{K}}\) and \(\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{j}}^2=\frac{\mathrm{n}}{\mathrm{A}}\left(\mathrm{Bn}^2+\mathrm{Cn}+\mathrm{D}\right)\), where \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \in \mathrm{N}\) and A has least value. Then:

    Solution

    \(\begin{aligned} & \mathrm{S}_{\mathrm{k}}=\frac{\mathrm{k}+1}{2} \\ & \mathrm{~S}_{\mathrm{k}}{ }^2=\frac{\mathrm{k}^2+1+2 \mathrm{k}}{4} \\ & \therefore \sum_{\mathrm{j}-1}^{\mathrm{n}} \mathrm{S}_{\mathrm{j}}{ }^2=\frac{1}{4}\left[\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\mathrm{n}+\mathrm{n}(\mathrm{n}+1)\right] \\ & =\frac{\mathrm{n}}{4}\left[\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+1+\mathrm{n}+1\right] \\ & =\frac{\mathrm{n}}{4}\left[\frac{2 \mathrm{n}^2+3 \mathrm{n}+1}{6}+\mathrm{n}+2\right] \\ & =\frac{n}{4}\left[\frac{2 n^2+9 n+13}{6}\right]=\frac{n}{24}\left[2 n^2+9 n+13\right] \\ & A=24, B=2, C=9, D=13 \\ & \end{aligned}\)

  • Question 3
    1 / -0

    All the pairs \((x, y)\) that satisfy the inequality \(2 \sqrt{\sin ^2 x-2 \sin x+5} \cdot \frac{1}{4 \sin ^2 y} \leq 1\) also satisfy the equation:

    Solution

    Given inequality is,

    \(2 \sqrt{\sin ^2 x-2 \sin x+5} \leq 2 \sin ^2 y \\\)

    \( \Rightarrow \sqrt{\sin ^2 x-2 \sin x+5} \leq 2 \sin ^2 y \\\)

    \( \Rightarrow \sqrt{(\sin x-1)^2+4} \leq 2 \sin ^2 y\)

    It is true if \(\sin x=1\) and \(|\sin y|=1\)

    Therefore, \(\sin x=|\sin y|\)

  • Question 4
    1 / -0

    Evaluate the integral \(\int_{1}^{4} \frac{\sqrt{x}+3}{\sqrt{x}} d x\).

    Solution

    \(\mathrm{I}=\int_{1}^{4} \frac{\sqrt{x}+3}{\sqrt{x}} d x\)

    Let \(\sqrt{x}+3=t\)\( \quad \ldots \ldots(i)\)

    Differentiating w.r.t \(x\), we get,

    \(\frac{1}{2 \sqrt{x}} d x=d t\)

    \(\frac{1}{\sqrt{x}} d x=2 d t\)

    The new limits to \(eq^{n}(i)\)

    When \(x=1,\sqrt{1}+3=t\)

    \(t=4\)

    Similarly,

    When \(x=4, t=5\)

    \(\therefore \int_{1}^{4} \frac{\sqrt{x}+3}{\sqrt{x}} d x=\int_{4}^{5} 2t d t\)

    \(={2}\times\left[\frac{t^{2}}{2}\right]_{4}^{5}\)

    \(=[t^{2}]_{4}^{5}\)

    Put the value of limit,

    \(=[5^{2}-4^{2}]\)

    \(={9}\)

  • Question 5
    1 / -0

    If \(A=\{2,3,4\}\) and \(B=\{5,6\}\), then how many subsets does \(A \times B\) have?

    Solution

    Given:

    \(A=\{2,3,4\} ; B=\{5,6\}\)

    We know that:

    For any two non-empty sets \({A}\) and \({B}\), we have:

    I. \(A \times B=\{(a, b) \mid a \in A\) and \(b \in B\}\)

    II. \(B \times A=\{(b, a) \mid a \in A\) and \(b \in B\}\)

    III. Any two ordered pairs \((a, b)=(c, d)\) if and only if \(a=c\) and \(b=d\).

    Then,

    \({A} \times {B}=\{(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)\}\)

    The number of elements in \(A \times B\) i.e.,

    \(n(A \times B)=6\)

    Therefore, the number of subsets of\(A \times B=2^{n}\)

    \(=2^{6}\)

    \(=64\)

    Therefore, there are 64 subsets for \(A \times B\).

  • Question 6
    1 / -0

    If \(\mathrm{P}\) and \(\mathrm{Q}\) be two sets such that \(\mathrm{P} \cup \mathrm{Q}=\mathrm{P},\) then \(\mathrm{P} \cap \mathrm{Q}\) will be:

    Solution

    Intersection:

    Let A and B be two sets. The intersection of A and B is the set of all those elements which are present in both sets A and B.

    The intersection of A and B is denoted by A ∩ B

    i.e., A ∩ B = {x : x ∈ A and x ∈ B}

    The Venn diagram for intersection is as shown below:

    Union:

    Let A and B be two sets. The union of A and B is the set of all those elements which belong to either A or B or both A and B.

    The union of A and B is denoted by A ∪ B.

    i.e., A ∪ B = {x : x ∈ A or x ∈ B}

    The Venn diagram for the union of any two sets is shown below:

    A ∪ B = A + B - A ∩ B

    As we know, 

    P ∪ Q = P + Q - P ∩ Q

    Putting the values given in the question,

    P = P + Q -  P ∩ Q

    P ∩ Q = Q

  • Question 7
    1 / -0

    Let \(\mathrm{S}\) be the set of all real roots of the equation, \(3^{\mathrm{x}}\left(3^{\mathrm{x}}-1\right)+2=3^{\mathrm{x}}-1\left|+3^{\mathrm{x}}-2\right|\). Then \(\mathrm{S}:\)

    Solution

    Let \(3^x=y\)

    \(\therefore \mathrm{y}(\mathrm{y}-1)+2=|\mathrm{y}-1|+|\mathrm{y}-2|\)

    Case 1: when \(\mathrm{y}>2\)

    \( \mathrm{y}^2-\mathrm{y}+2=\mathrm{y}-1+\mathrm{y}-2 \\\)

    \( \mathrm{y}^2-3 \mathrm{y}+5=0 \\\)

    \( \because \mathrm{D}<0[\therefore \text { Equation not satisfy. ] }\)

    Case 2 : when \(1 \leq \mathrm{y} \leq 2\)

    \(\mathrm{y}^2-\mathrm{y}^2+2=\mathrm{y}-1-\mathrm{y}+2 \\\)

    \( \mathrm{y}^2-\mathrm{y}+1=0 \\\)

    \( \because \mathrm{D}<0[\therefore \text { Equation not satisfy. }]\)

    Case 3: when \(\mathrm{y} \leq 1\)

    \(\mathrm{y}^2-\mathrm{y}+2=-\mathrm{y}+1-\mathrm{y}+2 \\\)

    \(\mathrm{y}^2+\mathrm{y}-1=0 \\\)

    \(\therefore \mathrm{y}=\frac{-1+\sqrt{5}}{2} \\\)

    \(=\frac{-1-\sqrt{5}}{2}[\therefore \text { Equation not Satisfy }]\)

    \(\because\) Only one \(-1+\frac{\sqrt{5}}{2}\) satisfy equation

  • Question 8
    1 / -0

    If the mean of 4, 7, 2, 8, 6 and a is 7, then the mean deviation from the median of these observations is:

    Solution

  • Question 9
    1 / -0

    Find the number of arrangements of letters in the word ASHUTOSH?

    Solution

    Given word is : ASHUTOSH

    Total 8 letters are there, in which letter \({S}\) and \({H}\) are repeated twice.

    We know that:Number of Permutations of '\({n}\)' things taken '\({r}\)' at a time:\(p(n, r)=\frac{n !}{(n-r) !}\)

    Number of Permutations of ‘\(n\)’ objects where there are \(n_1\) repeated items, \(n_2\) repeated items, \(n_k\) repeated items taken ‘\(r\)’ at a time:\(p(n, r)=\frac{n !}{n_{1} ! n_{2} ! n_{3} ! \ldots n_{k} !}\)

    Therefore,The number of arrangements will be:

    \(p(8,2)=\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 !}{(2 \times 1) 2 !}\)\(=10080\)

    Therefore, the number of arrangements of letters in the word ASHUTOSH will be \(10080\)

  • Question 10
    1 / -0

    If the constraints in a linear programming problem are changed _______________.

    Solution

    If the constraints in a linear programming problem are changed the problem is to be re-evaluated.The linear inequalities or equations or restrictions on the variables of a linear programming problem are called constraints. The conditions x ≥ 0, y ≥ 0 are called non-negative restrictions.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now