Self Studies
Selfstudy
Selfstudy

Mathematics Test - 29

Result Self Studies

Mathematics Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let \(y=y(x)\) be the solution of the differential equation \(\frac{d y}{d x}=2(y+2 \sin x-5) x-2 \cos x\) such that, \(y(0)=7\).

    Then \(\mathrm{y}(\pi)\) is equal to:

    Solution

    \(\text { Given, } \frac{d y}{d x}=2(y+2 \sin x-5) x-2 \cos x, y(0)=7 \\\)

    \(\Rightarrow \frac{d y}{d x}+2 \cos x=2(y+2 \sin x-5) x \\\)

    \(\text { Let } y+2 \sin x-5=t \\\)

    \(\Rightarrow \frac{d y}{d x}+2 \cos x=\frac{d t}{d x}\)

    Then, Eq. (i) becomes

    \(\frac{\mathrm{dt}}{\mathrm{dx}}=2 \mathrm{tx} \\\)

    \(\Rightarrow \frac{\mathrm{dt}}{\mathrm{t}}=2 \mathrm{xdx}\)

    On integrating

    \(\ln t=x^2+C \\\)

    \(\Rightarrow \ln (y+2 \sin x-5)=x^2+C \ldots(\text { iii) } \\\)

    \( \therefore y(0)=7 \\\)

    \( \Rightarrow \ln (7+0-5)=0+C \\\)

    \( \Rightarrow C=\ln 2 \\\)

    \( \therefore \text { From Eq. (ii), } \\\)

    \(\ln (y+2 \sin x-5)=x^2+\ln 2\)

    Now, at \(\mathrm{x}=\pi\)

    \(\ln (y(\pi)+2 \sin \pi-5)=\pi^2+\ln 2 \\\)

    \( \Rightarrow \ln (y(\pi)-5)=\pi^2+\ln 2 \\\)

    \( \Rightarrow y(\pi)-5=e^{\pi^2+\ln 2} \\\)

    \( \Rightarrow y(\pi)=2 \mathrm{e}^{\pi^2}+5\)

  • Question 2
    1 / -0

    If \({ }^{{n}} {P}_{{r}}=2760,{ }^{{n}} {C}_{{r}}=23\), then the value of \({r}\) is:

    Solution

    Given that:

    \({ }^{{n}} {P}_{{r}}=2760,{ }^{{n}} {C}_{{r}}=23\)

    We know that,

    \({ }^{{n}} {C}_{{r}}=\frac{{ }^{{n}} {P}_{{r}}}{{r} !}\)

    \(\Rightarrow 23=\frac{2760}{r !}\)

    \(\Rightarrow {r} !=\frac{2760}{23}=120\)

    \(\Rightarrow {r} !=5 \times 24\)

    \(\Rightarrow {r} !=5 \times 4 \times 6\)

    \(\Rightarrow {r} !=5 \times 4 \times 3 \times 2 \times 1\)

    \(\Rightarrow {r!}=5!\)

    \(\therefore r=5\)

  • Question 3
    1 / -0

    If the mean of 10 observations \(x_{1}, x_{2}, x_{3} \ldots x_{10}\) is 20 , then mean of \(x_{1}+2, x_{2}+4, x_{3}+\) \(6, \ldots x_{10}+20\) is:

    Solution

    Given:

    The mean of 10 observations \(x_{1}, x_{2}, x_{3} \ldots . x_{10}\) is 20.

    Mean of \(x_{1}+2, x_{2}+4, x_{3}+6, \ldots x_{10}+20=\) Mean of \(\left(x_{1}, x_{2}, x_{3} \ldots x_{10}\right)+\) Mean of \((2,4)\) \((6, \ldots .20) \ldots(1)\)

    Now mean of \((2,4,6, \ldots .20)\) is:

    Mean \(= \frac{\text{Sum of total observations}}{\text{Total number of observation}}\)

    \(\frac{(2+4+6+8+10+12+14+16+18+20)}{10}\)

    \(=\frac{2 \times 55}{10}=11\)

    From equation (1),

    Mean of \(x_{1}+2, x_{2}+4, x_{3}+6, \ldots x_{10}+20=20+11=31\)

  • Question 4
    1 / -0

    Find the rate of change of area of the square at the edge length of 12 cm, if the rate of change of edge length of the square is 2 cm/s.

    Solution

    Given that the edge length \(( L )\) of the square changes at the rate \(=\frac{ dL }{ dt }=2\) cm/s

    Area of the square \(A=L^{2}\)

    Rate of change of area \(A =\frac{ dA }{ dt }=\frac{ dA }{ d L } \times \frac{ dL }{ dt }\)

    \(\frac{ dA }{ dt }=\frac{ d }{ dL }\left[ L ^{2}\right] \times \frac{ d L }{ dt }\)

    \(\frac{ dA }{ dt }=2 L \times 2=4 L\)

    As, L \(=12\) cm

    \(\frac{ dA }{ dt }=4 \times 12\)

    \(\frac{ d A }{ dt }=48\) cm\(^{2} /\)s

  • Question 5
    1 / -0

    Let \(x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}\) and

    \(y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)\)

    Then \(\frac{1+\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^2}{\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2}}\) at \(\mathrm{t}=\frac{\pi}{4}\) is equal to:

    Solution

    \(\begin{aligned} & x=2 \sqrt{2} \cos t \sqrt{\sin 2 t}, y=2 \sqrt{2} \sin t \sqrt{\sin 2 t} \\ & \therefore \frac{d x}{d t}=\frac{2 \sqrt{2} \cos 3 t}{\sqrt{\sin 2 t}}, \frac{d y}{d t}=\frac{2 \sqrt{2} \sin 3 t}{\sqrt{\sin 2 t}} \\ & \therefore \frac{d y}{d x}=\tan 3 t,\left(a t t=\frac{\pi}{4}, \frac{d y}{d x}=-1\right) \\ & \text { and } \frac{d^2 y}{d x^2}=3 \sec ^2 3 t \cdot \frac{d t}{d x}=\frac{3 \sec ^2 3 t \cdot \sqrt{\sin 2 t}}{2 \sqrt{2} \cos 3 t} \\ & \left(. \text { At } \cdot t=\frac{\pi}{4}, \frac{d^2 y}{d x^2}=-3\right) \\ & \therefore \frac{1+\left(\frac{d y}{d x}\right)^2}{\frac{d^2 y}{d x^2}}=\frac{2}{-3}=\frac{-2}{3}\end{aligned}\)

  • Question 6
    1 / -0

    A continuous random variable \(X\) has the distribution function \(F(x)=0\) if \(x<1\) \(=k(x-1)^{4}\) if \(13\) The value of \(k\) is:

    Solution

    Concept:

    For a continuous random variable, \(f(x)\) is called probability density function if it satisfies-

    \(\int_{-\infty}^{\infty} f(x) d x=1\)

    Relation between Probability density function \(f(x)\) and Probability distribution function is:

    \(f(x)=\frac{d}{d x}\{F(x)\}\)

    Calculation:

    Here Probability distribution function \(F ( x )\) is given

    \(\because \int_{-\infty}^{\infty} f(x) d x=1\)

    \(\Rightarrow \int_{-\infty}^{1} f(x) d x+\int_{1}^{3} f(x) d x+\int_{3}^{\infty} f(x) d x=1\)

    \(\Rightarrow \int_{-\infty}^{1} \frac{d}{d x}\{F(x)\} d x+\int_{1}^{3} \frac{d}{d x}\{F(x)\} d x+\int_{3}^{\infty} \frac{d}{d x}\{F(x)\} d x=1\)

    \(\Rightarrow \int_{-\infty}^{1} \frac{d}{d x}\{0\} d x+\int_{1}^{3} \frac{d}{d x}\left\{k(x-1)^{4}\right\} d x+\int_{3}^{\infty} \frac{d}{d x}\{1\} d x=1\)

    \(\Rightarrow \int_{1}^{3} 4 k(x-1)^{3} d x=1\)

    \(\Rightarrow 4 \frac{k}{4}\left[(x-1)^{4}\right]_{1}^{3}=1\)

    \(\Rightarrow k\left[(3-1)^{4}\right]=1\)

    \(\Rightarrow k=\frac{1}{16}\)

  • Question 7
    1 / -0

    The objective function of a linear programming problem is _______________.

    Solution

    The objective function of a linear programming problem is a function to be optimized.It has either a maximum or minimum value or has no solution.The objective function in linear programming problems is the real-valued function whose value is to be either minimized or maximized subject to the constraints defined on the given LPP over the set of feasible solutions. The objective function of a LPP is a linear function of the form z = ax + by.

  • Question 8
    1 / -0

    If \(A=\{2,4,6\}, B=\{4,6,7\}\) and \(C=\{2,7\}\), then \((A-B) \times(B-C)\) is:

    Solution

    Given:

    \(\mathrm{A}=\{2,4,6\}, \mathrm{B}=\{4,6,7\}\) and \(\mathrm{C}=\{2,7\}\)

    We know that:

    For any two non-empty sets \(A\) and \(B\), we have:

    \(A \times B=\{(a, b) \mid a \in A\) and \(b \in B\}\)

    Then,

    \( \mathrm{A}-\mathrm{B}=\{2,4,6\}-\{4,6,7\}=\{2\}\)

    Similarly,

    \(B-C=\{4,6,7\}-\{2,7\}=\{4,6\}\)

    Then,

    \( (A-B) \times(B-C)=\{2\} \times\{4,6\}\)

    \(=\{(2,4),(2,6)\}\)

    Therefore,

    \((A-B) \times(B-C)=\{(2,4),(2,6)\}\)

  • Question 9
    1 / -0

    If \(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}\) and \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}\) are vectors of magnitude \(\alpha\) then the magnitude of the vector \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|\) is?

    Solution

    Given:

    \(|\overrightarrow{\mathrm{a}}|=\alpha,|\overrightarrow{\mathrm{b}}|=\alpha\) and \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=\alpha\)

    As we know,

    \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \cos \theta}\)

    \( \alpha=\sqrt{\alpha^{2}+\alpha^{2}+2(\alpha)(\alpha) \cos \theta}\)

    \( \alpha^{2}=2 \alpha^{2}+2 \alpha^{2} \cos \theta\)

    \(-1=2 \cos \theta\)

    \( \cos \theta=-\frac{1}{2}\)

    Now,

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos \theta}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\alpha^{2}+\alpha^{2}-2(\alpha)(\alpha) \cos \theta}\)

    \(\because \cos \theta=-\frac{1}{2}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{2 \alpha^{2}-2 \alpha^{2}\left(\frac{-1}{2}\right)}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{2 \alpha^{2}+\alpha^{2}}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{3}} {\alpha}\)

  • Question 10
    1 / -0

    A bag contains \(4\) black, \(5\) yellow and \(6\) green balls. Three balls are drawn at random from the bag. What is the probability that all of them are yellow?

    Solution

    Total number of balls \(=4+5+6=15\)

    Let \(S\) be the sample space.

    Number of all combinations of \(n\) things, taken \(r\) at a time, is given by \({ }^{n} C_{r}=\frac{n !}{(r) !(n-r) !}\)

    \(n(S)=\) Total number of ways of drawing \(3\) balls out of \(15={ }^{15} C_{3}\)

    \(E=\) Event of drawing \(3\) balls, all of them are yellow.

    \(n(E)=\) Number of ways of drawing \(3\) balls, all of them are yellow \(=\)Number of ways of drawing \(3\) balls from the total \(5={ }^{5} C_{3}\)( \(\because\) there are \(5\) yellow balls in the total balls)

    \(P(E)=\frac{n(E)}{n(S)}=\frac{{ }^{5} C_{3}}{{ }^{15} C_{3}}\)

    =\(\frac{\frac{5!}{3 ! 2 !}}{\frac{15!}{3 ! 12 !}}\)

    =\(\frac{\left(\frac{5 \times 4}{2 \times 1}\right)}{\left(\frac{15 \times 14 \times 13}{3 \times 2 \times 1}\right)}\)

    =\(\frac{2}{91}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now