Self Studies

Mathematics Test - 3

Result Self Studies

Mathematics Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(2(3 x-4)-2<4 x-2 \geq 2 x-4 ;\) then the possible value of \(x\) can be:

    Solution

    Given: \(2(3 x-4)-2<4 x-2 \geq 2 x-4\)

    First by solving the inequation: \(2(3 x-4)-2<4 x-2\) we get,

    \(\Rightarrow 6 x-10<4 x-2\)

    \(\Rightarrow 2 x<8\)

    \(\Rightarrow x<4\)\(\quad\).....(1)

    Similarly, by solving the inequation \(4 x-2 \geq 2 x-4\) we get,

    \(\Rightarrow 2 x \geq-2\)

    \(\Rightarrow x \geq-1\)\(\quad\).....(2)

    From equation (1) and (2) we can say that \(-1 \leq x<4\)

    So, out of the given options the possible value which \(x\) can take is 2.

  • Question 2
    1 / -0

    If \(\cos ^{-1}\left(\frac{p}{a}\right)+\cos ^{-1}\left(\frac{q}{b}\right)=\alpha\), then \(\frac{p^{2}}{a^{2}}+k \cos \alpha+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha\) where \(\mathrm{k}\) is equal to:

    Solution

    Given,

    \(\frac{p^{2}}{a^{2}}+k \cos \alpha+\frac{q^{2}}{b^{2}}=\sin ^{2} \alpha......\)(i)

    \(\cos ^{-1}\left(\frac{p}{a}\right)+\cos ^{-1}\left(\frac{q}{b}\right)=\alpha\)

    As we know,

    \(\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \cdot \sqrt{1-y^{2}}\right)\)

    \(\cos ^{-1}\left(\frac{p q}{a b}-\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\right)=\alpha\)

    \(\cos \alpha=\left(\frac{p q}{a b}-\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\right)\)

    \(\frac{p q}{a b}-\cos \alpha=\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}}\)

    Squaring both sides, we get

    \(( \frac{p q}{a b}-\cos \alpha)^2=(\sqrt{1-\frac{p^{2}}{a^{2}}} \sqrt{1-\frac{q^{2}}{b^{2}}} )^2\)

    \(\frac{(p q)^{2}}{(a b)^{2}}+\cos ^{2} \alpha-2 \frac{p q}{a b} \cos \alpha=\left(1-\frac{p^{2}}{a^{2}}\right)\left(1-\frac{q^{2}}{b^{2}}\right)\)

    \(\frac{(p q)^{2}}{(a b)^{2}}+\cos ^{2} \alpha-2 \frac{p q}{a b} \cos \alpha=1-\frac{p^{2}}{a^{2}}-\frac{q^{2}}{b^{2}}+\frac{(p q)^{2}}{(a b)^{2}}\)

    \(\sin ^{2} \alpha=\frac{p^{2}}{a^{2}}+\frac{q^{2}}{b^{2}}-2 \frac{p q}{a b} \cos \alpha.....\)(ii)

    Comparing equation (i) and (ii), we get

    \(\mathrm{k}=-\frac{2 p q}{a b}\)

  • Question 3
    1 / -0

    Weather Forecast Company makes a forecast of raining at \(70 \%\). Company's forecast are only correct \(60 \%\) of the time. Find the probability of it correctly forecasting rain?

    Solution

    Given:

    Forecast of rain \(=70 \%\)

    Correct probability \(=60 \%\)

    \(P(A)=\frac{70}{100}=\frac{7}{10}\)

    \(P(B)=\frac{60}{100}=\frac{3}{5}\)

    Probability of two unrelated events happening together is equal to product of individual probabilities.

    \(\therefore\) Probability of correctly forecasting rain \(P(A \cap B)\)

    \(=P(A) \times P(B)\)

    \(=\frac{7}{10} \times \frac{3}{5}\)

    \(=\frac{21}{50}\)

  • Question 4
    1 / -0

    A set containing \(n\) elements, has exactly ___________ subsets.

    Solution

    If a set containing n elements then number of elements in their subset = 2n

    For a given set \(\mathrm{A}\), a set \(\mathrm{B}\) is a subset of set \(\mathrm{A}\) if all elements of set \(\mathrm{B}\) are also elements of set \(A\). Set \(A\) is called the super-set of set \(B\). Null set "{ }" or "\(\phi\)" is a subset of all sets.

  • Question 5
    1 / -0

    Let mN , and suppose three numbers are chosen at random from the numbers 1, 2, 3, ..., m.

    Statement - 1: If m = 2n for some nN , then the chosen numbers are in A.P. with probability 32(2n-1) 

    Statement - 2: If m = 2n + 1 for some nN, then the chosen numbers are in A.P. with probability 3n4n2-1

    Solution

    We can choose three numbers out of m in C3m  ways. Let numbers be x1,x2,x3  .Now,x1,x2,x3are in A.P. if and only if x1+x3=2x2 , that is, if and only if either both x1,x3 are odd or both x1,x3 are even. If m=2n,x1 and x3 can be chosen in C2n+C2n=n(n-1) ways. 

    In this case, probability of the required event is n(n-1)C32n

    =6n(n-1)2n(2n-1)(2n-2)=3n2(2n-1)

    If m=2n+1,x1 and x3 can be chosen in n22n+1C3=3n4n2-1 ways.

    In this case, probability of the required event is

    n22n+1C3=3n4n2-1

  • Question 6
    1 / -0

    What is \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\) equal to?

    Solution

    Given,

    \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\)

    Put \(x=\tan \theta\)

    We have to find the value of \(\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\)

    Put \(x=\tan \theta\)

    \(\Rightarrow \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)\)

    \(\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}\right) \)\(\quad\quad(\because1+\tan ^{2}\theta=\sec ^{2} \theta)\)

    \(=\cos ^{-1}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\)

    \(=\cos ^{-1}(\cos 2 \theta) \quad\left(\because \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right)\)

    \(=2 \theta \quad\left(\because \cos ^{-1} \cos x=x\right)\)

    \(=2 \tan ^{-1} x \quad(\because x=\tan \theta)\)

  • Question 7
    1 / -0

    If |z1|=2, |z2-1|=4,

    Solution

    Correct Answer:       (1,4)

     

    Incorrect Answer:   (2)

     

    By mistake the student may proceed as, 

    4=z2-1z2-1z25 least value of z2-z1=3

     least value of z1-z2=3

     The option is incorrect.

    Incorrect Answer:   (3)

    By mistake a student may proceed as,

    z1-z2=z2-z1=z2-1-z1+1z2-1-z1+1=3

     The greatest value of z1-z2=3

    The option is incorrect.

  • Question 8
    1 / -0

    If the shortest distance between the lines  x41=y+12=z-3 and xλ2=y+14=z2-5 is 65 , then the sum of all possible values of λ is:

    Solution
    x4
    1
    =
    y+1
    2
    =
    z
    3


    xλ
    2
    =
    y+1
    4
    =
    z2
    5

     

     

    the shortest distance between the lines

    =|
    (
    a
    b
    )
    (
    d1
    ×
    d2
    )
    |
    d1
    ×
    d2
    |
    |


    =|

    |
    λ4 0 2
    1 2 3
    2 4 5
    |
    |
    ^
    i
    ^
    j
    ^
    k
    1 2 3
    2 4 5
    |
    |
    =|
    (λ4)(10+12)0+2(44)
    2
    ^
    i
    1
    ^
    j
    +0
    ^
    k
    |

    6
    5
    =|
    2(λ4)
    5
    |

    <
  • Question 9
    1 / -0

    Find the general solution: \(\sec ^{2} x \tan y\ d x+\sec ^{2} y \tan x\ d y=0\)

    Solution

    The given differential equation is: \(\sec ^{2} x \tan y\ d x+\sec ^{2} y \tan x\ d y=0\)

    \(\Rightarrow \frac{\sec ^{2} x \tan y\ d x+\sec ^{2} y \tan x\ d y}{\tan x \tan y}=0\)

    \(\Rightarrow \frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0\)

    \(\Rightarrow \frac{\sec ^{2} x}{\tan x} d x=-\frac{\sec ^{2} y}{\tan y} d y\)

    Integrating both sides of this equation, we get: \(\int \frac{\sec ^{2} x}{\tan x} d x=-\int \frac{\sec ^{2} y}{\tan y} d y\)

    Let \(\tan x=t\) \(\Rightarrow \frac{d}{d x}(\tan x)=\frac{d t}{d x}\) \(\Rightarrow \sec ^{2} x=\frac{d t}{d x}\) \(\Rightarrow \sec ^{2} x d x=d t\)

    Now, \(\int \frac{\sec ^{2} x}{\tan x} d x=\int \frac{1}{t} d t=\log t=\log (\tan x)\)

    Similarly, \(\int \frac{\sec ^{2} x}{\tan x} d y=\log (\tan y)\)

    Substituting these values in equation \((1),\) we get: \(\Rightarrow \log (\tan x)=-\log (\tan y)+\log C\) \(\Rightarrow \log (\tan x)=\log \left(\frac{C}{\tan y}\right)\) \(\Rightarrow \tan x=\frac{C}{\tan y}\) \(\Rightarrow \tan x \tan y=C\)

  • Question 10
    1 / -0

    What is the value of the determinant \(\left|\begin{array}{ccc}{i} & {i}^{2} & {i}^{3} \\ {i}^{4} & {i}^{6} & {i}^{8} \\ {i}^{9} & {i}^{12} & {i}^{15}\end{array}\right|\) where \({i}=\sqrt{-1}\) ?

    Solution

    Given,

    Determinant is \(\left|\begin{array}{ccc}{i} & {i}^{2} & {i}^{3} \\ {i}^{4} & {i}^{6} & {i}^{8} \\ {i}^{9} & {i}^{12} & {i}^{15}\end{array}\right|\).

    Since, we have,

    \({i}=\sqrt{-1}\)

    \(\therefore {i}^{2}=-1, {i}^{3}=-{i}, {i}^{4}=1, {i}^{6}=-1, {i}^{8}=1, {i}^{9}={i}, {i}^{12}=1,\) and \({i}^{15}=-{i}\)

    \(=\left|\begin{array}{ccc}i & -1 & -i \\ 1 & -1 & 1 \\ i & 1 & -i\end{array}\right|\)

    \(={i}({i}-1)+1(-{i}-{i})-{i}(1+{i})\)

    \(={i}^{2}-{i}-2 {i}-{i}-{i}^{2}\)

    \(=-4 i\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now